

Evaluation of the Antitumor Activity of Platinum Nanoparticles in the Treatment of Hepatocellular Carcinoma Induced in Rats

A Thesis

Submitted for the Ph.D. Degree of Science in Biochemistry

Submitted by

Mustafa Mahmoud Mohammed Elbakry

Assistant Lecturer – Biochemistry department M.Sc. in Biochemistry (2014) – Faculty of Science - Ain Shams University

Under Supervision of

Prof. Dr. Amina M. Medhat

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Somaya Z. Mansour

Professor of Biochemistry National Center for Radiation Research & Technology Atomic Energy Authority

Prof. Dr. Eman I. Kandil

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Sawsan M. El-sonbaty

Assistant Professor of Biochemistry
National Center for Radiation
Research & Technology
Atomic Energy Authority

Biochemistry Department
Faculty of Science
Ain Shams University
2018

Approval Sheet

Evaluation of the Antitumor Activity of Platinum Nanoparticles in the Treatment of Hepatocellular Carcinoma Induced in Rats

A Thesis

Submitted for the Ph.D. Degree of Science in Biochemistry

Submitted by

Mustafa Mahmoud Mohammed Elbakry

Assistant Lecturer – Biochemistry department M.Sc. in Biochemistry (2014) – Faculty of Science - Ain Shams University

Supervisors:

-Dr. Amina M. Medhat Professor of Biochemistry, Faculty of Science,

Ain Shams University

-Dr. Eman I. Kandil Professor of Biochemistry, Faculty of Science,

Ain Shams University

-Dr. Somaya Z. Mansour Professor of Biochemistry, National Center

for Radiation Research & Technology Atomic

Energy Authority

-Dr. Sawsan M. El-sonbaty Assistant Professor of Biochemistry, National

Center for Radiation Research & Technology

Atomic Energy Authority

Examiners committee.

-Dr. Mamdouh M. Ali Professor of Biochemistry, National Research

Center

-Dr. Omayma A. Ragab Professor of Biochemistry, Faculty of

Veterinary Medicine, Benha University

-Dr. Amina M. Medhat Professor of Biochemistry, Faculty of Science,

Ain Shams University

-Dr. Eman I. Kandil Professor of Biochemistry, Faculty of Science,

Ain Shams University

Declaration

I declare that this thesis has been composed and the work recorded here has been done by myself.

It has not been submitted for any other degree at this or any other university.

Mustafa Mahmoud

Dedication

In the name of Allah most gracious most merciful, Praise be to God, the Cherisher and Sustainer of the worlds.

I dedicate this thesis to my mother soul and to my family. A special feeling of gratitude to my mother who passed away and my father whose words of encouragement and push for tenacity ring in my ears, thank you very much for your love, endless support and encouragement.

this thesis to dedicate friends many and colleagues who supported throughout the me process. I will always appreciate what they have throughout the PhD entire done for me

ACKNOWLEDGEMENT

الحمد لله رب العالمين

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This PhD thesis would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to Prof. Dr. Amina M. Medhat, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for giving me the opportunity to perform this work under excellent working atmosphere, for her encouragement, patience and interest that she showed in my work during the study period.

Special thanks are due to Prof. Dr. Somaya Z. Mansour, Professor of Biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt for her kind supervision, moral support, instructive guidance and kind advice.

No words can express my sincere gratitude to Prof. Dr. Eman I. Kandil, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for her guidance and help during the preparation for this work, assisting me during the research activities, for creative ideas, and especially for the careful

reading of my thesis. I found her a true academician and I will always remember her with respect.

Special thanks are extended to Dr. Sawsan M. El-sonbaty, Assistant Professor of Biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt for her participation in this study, her encouragement and her great support during my practical work. I closely worked with her throughout the all stages of this study and I found in her a decent, kind and a greatly respective person. I would like to thank her very much for her guide during the practical work.

Mustafa Mahmoud

Contents

Item No.	Subject	Page
	List of Abbreviations	Ι
	List of Figures	III
	List of Tables	VI
	Abstract	VII
	Introduction.	1
	Aim of the Work	5
1.	Review of Literature	6
1.1	Hepatocellular Carcinoma	6
1.2	Risk Factors for Hepatocellular	
	Carcinoma	7
1.2.1	Cirrhosis	8
1.2.2	Hepatitis B virus infection	11
1.2.3	Hepatitis C virus infection	12
1.2.4	Co-infection with human	
	immunodeficiency virus	13
1.2.5	Autoimmune Hepatitis	13
1.2.6	Nonalcoholic Fatty Liver Disease and	
	Nonalcoholic Steatohepatitis	13
1.2.7	Other Risk Factors	14
1.3	Diethylnitrosamine	15
1.4	Therapeutic Approaches for HCC	16

Item No.	Subject	Page
1.4.1	Surgical Resection	18
1.4.2	Liver Transplantation	18
1.4.3	Locoregional Ablation [Local Ablative	
	Therapy]	19
1.4.4	Radiotherapy	20
1.4.5	Sorafenib	20
1.5	Platinum Based Chemotherapy	21
1.5.1	Discovery of Cis-platin	22
1.5.2	Mechanism of Action of Platinum	
	Anti-Cancer Drugs	23
1.5.3	Second and Third Generation	
	Cis-platin Analogues	27
1.6	Nanoparticles in Medicine	31
1.6.1	Nanomedicine and cancer	32
1.6.2	Platinum nanoparticles	36
1.7	Biological synthesis of nanoparticles	39
1.7.1	Nanoparticle synthesis using plants	40
1.7.2	Nanoparticle synthesis using	
	Microorganisms	41
2.	Materials and Methods	42
2.1	Materials	42
2.2	Methods	43

Item No.	Subject	Page
2.2.1	Characterization of platinum	
	nanoparticles	43
2.2.1.1	Transmission electron microscopy	43
2.2.1.2	Ultraviolet-visible spectroscopy	43
2.2.1.3	Fourier transforms infrared	
	spectroscopy	44
2.2.2	In vitro studies	44
2.2.2.1	Cytotoxicity assay using crystal	
	violet	44
2.2.3	In vivo studies	46
2.2.3.1	Determination of LD ₅₀ using	
	experimental animals	46
2.2.3.2	Experimental animals	47
2.2.3.3	Collection of samples	49
2.2.3.4	Biochemical methods	49
2.2.3.5	Quantitative real time PCR	70
2.2.3.6	Histopathological studies	76
2.3	Statistical analysis	76
3.	Results	77
3.1	Characterization of platinum	
	nanoparticles	<i>77</i>
3.2	In vitro studies	<i>80</i>

Item No.	Subject	Page
3.2.1	Cytotoxicity assay using crystal	
	violet	80
3.3	In vivo studies	<i>81</i>
3.3.1	Acute toxicity studies	81
3.3.1.1	Determination of median lethal dose	
	value	81
3.3.2	Biochemical parameters	82
3.3.2.1	Determination of oxidative stress	82
3.3.2.2	Malondialdehyde level in liver tissue	85
3.3.2.3	Liver function tests	87
3.3.2.4	Serum alpha-fetoprotein	93
3.3.2.5	Liver caspase-3	93
3.3.2.6	Liver cytochrome c	93
3.3.3	Quantitative real time PCR	96
3.3.4	Histopathological studies	99
4.	Discussion	101
5.	Summary and Conclusion	123
6.	References	128
	Arabic Abstract	1
	Arabic Summary	2

LIST OF ABBREVIATIONS

AFP Alpha-fetoprotein

ALP Alkaline phosphatase

ALT Alanine aminotransferase
AST Aspartate aminotransferase

BCL-2 B-cell lymphoma 2

Cap-3 Caspase-3

cDNA Complementary DNA

Ct Threshold cycle
Cyt c Cytochrome c

dATP Deoxyadenosine triphosphatedCTP Deoxycytidine triphosphate

DEN Diethylnitrosamine

DEPC Diethyl pyrocarbonate

dGTP Deoxyguanosine triphosphatedTTP Deoxythymidine triphosphate

ELISA Enzyme-linked immunosorbent assay

FTIR Fourier transform infrared spectroscopy

G1 phase Gap 1 phase G2 phase Gap 2 phase

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GSH Reduced glutathione content

Gy Gray

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus