

# The Effect of Neurofeedback (NFB) on children with Attention Deficit Hyperactivity Disorder (ADHD)

Thesis submitted for PHD degree

Department of Medical Studies for Childhood

By

Lamis Hassan Emad Mekkawy

Msc Ain Shams University

Under supervision of

#### Dr. Mostafa Mohamed Elnashar

Professor of ENT

Faculty of Postgraduate Childhood Studies - Ain Shams University

#### Dr. Ehab Mohamed Eid

Professor of Public Health

Faculty of Postgraduate Childhood Studies - Ain Shams University

#### Dr. Rania Hamed Shatla

Assistant Professor of Pediatrics

Faculty of Medicine - Ain Shams University

#### Dr. Dina Mohamed Khaled

Lecturer of Phoniatrics

Faculty of Postgraduate Childhood Studies - Ain Shams University

2018



# صفحة العنوان

اسم الطالب: لميس حسن عماد مكاوي

الدرجة العلمية: درجة دكتوراه الفلسفة في دراسات الطفولة

القسم التابع لها: قسم الدر اسات الطبية للأطفال

اسم الكلية: كلية الدر اسات العليا للطفولة

الجامعة: جامعة عين شمس

سنة التخرج:

سنة المنح:



# شكسر

## أشكر السادة الأساتذة الذين قاموا بالإشراف على هذا البحث وهم:

أ.د/ مصطفى مجد النشار أستاذ الأنف والأذن والحنجرة بقسم الدراسات الطفولة الطبية للأطفال – كلية الدراسات العليا للطفولة – جامعة عين شمس

أ.د./ إيهاب محد عيد أستاذ الصحة العامة بقسم الدراسات الطبية للأطفال – كلية الدراسات العليا للطفولة – جامعة عين شمس

أ.م.د./ رانيا حامد شتلة أستاذ مساعد طب الأطفال – كلية الطب – جامعة عين شمس



#### صفحة الموافقة

لميس حسن عماد مكاوى اسم الطالب:

تأثير التغذية العصبية المرتجعة في الأطفال المصابين باضطراب نقص عنوان الرسالة:

الانتباه وفرط النشاط

دكتور اه الفلسفة اسم الدرجة:

لجنة الحكم والمناقشة:

أستاذ الأنف والأذن والحنجرة بقسم الدر اسات الطبية أد/ مصطفى محد النشار

للأطفال - كلية الدر إسات العليا للطفولة - جامعة عين

شمس

أستاذ الصحة العامة بقسم الدراسات الطبية للأطفال - كلية أ.د./ عمر السيد الشوربجي الدر اسات العليا للطفولة - جامعة عين شمس

أستاذ الصحة العامة بقسم الدراسات الطبية للأطفال - كلية

الدراسات العليا للطفولة - جامعة عين شمس

مدير مستشفى الجلاء العسكرى للأطفال لواء طبیب/ مراد الفقی رمزی

تاريخ البحث:

الدراسات العليا:

أد/ إيهاب محد عيد

ختم الإجازة

۲ / /

موافقة مجلس الجامعة

۲ / /

أجيزت الرسالة بتاريخ ۲ / / موافقة مجلس الكلية

۲ / /





First and foremost, all thanks and praises are due to **ALLAH**, most gracious, most merciful, who granted me the ability to accomplish this work.

Words can never express my deepest gratitude and sincere appreciation to **Prof. Dr. Mostafa Elnashar** for his valuable guidance, extreme patience, kind advice and constructive opinions.

My deepest heartily thanks and appreciation and sincerest gratitude to **Prof. Dr. Ehab Eid** who spared no time and effort to provide me with his valuable instructions and expert touches. I will always owe his so much for guiding and helping me. I really had the honor of having his supervise for this work.

My everlasting gratitude to **Prof. Dr. Rania Shatla** for her great help and continuous guidance. Her extreme careful supervision and precise advices are more that I can express.

My deepest thanks to **Dr. Dina Khaled** who supported me in both academic and social field, her presence and continuous support was endless.

I am indebted to every patient included in this study and also their parents for their cooperation and their trust. I wish them all the best of health and happiness.

Finally, my truthful affection and love to my parents, my husband and my sister and brother who were, and will always be, by my side, all my life.

#### **Abstract**

**Background:** ADHD is one of the most common neurodevelopmental and psychiatric disorders of childhood. NFB is a comprehensive training system that facilitates changes in brain waves. The aim of this study is to assess whether NFB can be considered a treatment modality for ADHD.

**Methods:** The present study is a clinical trial randomized study that was conducted on 84 patients who were divided into two main groups: Group (A): freshly diagnosed cases of ADHD patients who were only receiving sessions of NFB. Group (B): cases of ADHD patients who were receiving both NFB sessions medications. All participants with and were treated methylphenidate capsules with a total dose of 1mg/kg/day in the form of long acting capsules. The total dose was between 20-60 mg. compliance and side effects were recorded. Both groups received 20 sessions of NFB.

**Results:** there was statistically significant improvement in both groups on NFB therapy with a higher reduction rate in the group receiving combined treatment (NFB and medications).

**Conclusion:** NFB can be considered a treatment modality for improving the symptomatology of ADHD.

**Keywords:** attention deficit hyperactivity disorder, neurofeedback, theta beta ratio

# **List of Contents**

| Subject                                  | Page |
|------------------------------------------|------|
| Abstract                                 |      |
| List of tables                           | i    |
| List of figures                          | iii  |
| List of abbreviations                    | V    |
| Introduction                             | 3    |
| Aim of the Study                         | 7    |
| Review of Literature                     |      |
| Attention Deficit Hyperactivity Disorder | 11   |
| The science of NFB                       |      |
| The link between ADHD and NFB            | 21   |
| Methodology                              | 75   |
| Results                                  | 83   |
| Discussion                               | 97   |
| Summary                                  | 109  |
| Conclusion and Recommendations           | 115  |
| References                               | 119  |
| Appendices                               |      |
| Arabic abstract                          | 1    |
| Arabic Summary                           | 2    |

# **List of Tables**

| No.               |                                                                                                                   | Page |
|-------------------|-------------------------------------------------------------------------------------------------------------------|------|
| Table (1):        | Summary of Possible Effects of<br>Stimulant Use Related to NFB<br>Treatment                                       | 61   |
| <b>Table (2):</b> | Demographic distribution of the studied groups                                                                    | 84   |
| <b>Table (3):</b> | Mixed Model ANOVA test for TBR                                                                                    | 87   |
| <b>Table (4):</b> | Group effect in both studied groups                                                                               | 88   |
| <b>Table (5):</b> | Time effect in both groups (statistically significant)                                                            | 88   |
| <b>Table (6):</b> | Percent reduction rate in both groups, showing that the percent reduction rate in group B was higher than group A | 89   |
| <b>Table (7):</b> | Mixed model ANOVA test for Conner's scale                                                                         | 89   |
| <b>Table (8):</b> | Group effect on the studied groups regarding Conner's scale                                                       | 91   |
| <b>Table (9):</b> | Time effect in both groups                                                                                        | 91   |

### ≥List of 7ables & Figures □

| No.                |                                                                          | Page |
|--------------------|--------------------------------------------------------------------------|------|
|                    | (statistically significant)                                              |      |
| Table (10):        | Percent reduction in both groups (statistically significant)             | 92   |
| <b>Table (11):</b> | Comparison of the reduction rate among the three different types of ADHD | 92   |

# **List of Figures**

| No           |                                                                           | Page |
|--------------|---------------------------------------------------------------------------|------|
| Figure (1):  | Principles of NFB                                                         | 23   |
| Figure (2):  | Areas of NFB application                                                  | 24   |
| Figure (3):  | History of progression of mental health                                   | 27   |
| Figure (4):  | NFB system                                                                | 34   |
| Figure (5):  | Process of learning in NFB                                                | 37   |
| Figure (6):  | Different brain waves                                                     | 42   |
| Figure (7):  | Training design of a NFB protocol                                         | 46   |
| Figure (8):  | Individual frequency monitoring during a NFB training session             | 47   |
| Figure (9):  | Electrode positioning during a NFB session                                | 48   |
| Figure (10): | General patient characteristics required for successful engagement in NFB | 50   |
| Figure (11): | Approach to NFB and psychopharmacology                                    | 51   |
| Figure (12): | Purpose of ongoing behavioral and EEG assessment during treatment         | 53   |

### ≥List of 7ables & Figures □

| No                  |                                                                             | Page |
|---------------------|-----------------------------------------------------------------------------|------|
| <b>Figure (13):</b> | Endophenotypes of ADHD                                                      | 65   |
| <b>Figure (14):</b> | Model of attention of NFB.                                                  | 67   |
| <b>Figure (15):</b> | General curve – attention and performance                                   | 69   |
| <b>Figure (16):</b> | Yerkes–Dodson law of attention – performance and optimal arousal.           | 69   |
| <b>Figure (17):</b> | Flow chart for assessing studied children                                   | 76   |
| <b>Figure (18):</b> | Flow diagram of the study                                                   | 83   |
| Figure (19):        | Age distribution among the studied groups (statistically insignificant)     | 85   |
| Figure (20):        | IQ level distribution among the studied group (statistically insignificant) | 85   |
| Figure (21):        | Sex distribution among the studied groups (statistically insignificant)     | 86   |
| Figure (22):        | Bar distribution of the studied groups                                      | 86   |
| <b>Figure (23):</b> | Mean TBR for both groups before and after NFB                               | 87   |

### ≥List of 7ables & Figures □

| No           |                                                    | Page |
|--------------|----------------------------------------------------|------|
| Figure (24): | Mean TBR for both groups before and after Conner's | 90   |

# **List of Abbreviations**

| Abb.         | Full term                                            |
|--------------|------------------------------------------------------|
| ADHD         | Attention Deficit Hyperactivity Disorder             |
| ANS          | Autonomic Nervous System                             |
| BCI          | Brain Computer Interface                             |
| CNV          | Continuous Negative Variation                        |
| CNV          | Contingent Negative Variation                        |
| CPRS-<br>R:L | Conners Parent Rating Scale-Revised- Long<br>Version |
| CPT          | Continuous Performance Task                          |
| DSM          | Diagnostic And Statistical Manual                    |
| EEG          | Electro-Encephalogram                                |
| FMRI         | Functional Magnetic Resonance Imaging                |
| HD           | Hyperkinetic Disorder                                |
| HEG          | Hemoencephalography                                  |
| HKD          | Hyperkinetic Disorder                                |
| HKD/HD       | Hyperkinetic Disorder                                |
| ICD          | International Classification Of Disease              |
| ICD          | The International Classification Of Diseases         |
| ILF          | Infra Low Frequency                                  |

| Abb.   | Full term                                        |
|--------|--------------------------------------------------|
| LENS   | Low Energy Neurofeedback System                  |
| LFP    | Local Field Potential                            |
| LORETA | Low Resolution Brain Electromagnetic Tomogra phy |
| MPH    | Methylphenidate                                  |
| MTA    | Multi-Modat Treatment Study                      |
| NFB    | Neurofeedback                                    |
| nirHEG | Near Infrared Heg                                |
| pirHEG | Passive Infrared Heg                             |
| QEEG   | Quantitative Electroencephalogram                |
| RP     | Readiness Potential                              |
| SCP    | Slow Cortical Potential                          |
| SD     | Standard Deviation                               |
| SMR    | Sensorimotor Rhythm                              |
| TBR    | Theta Beta Ratio                                 |
| WHO    | World Health Organization                        |