Role of continuous flow Left ventricular assist device in the management of patients with heart failure

Essay

Submitted for the Partial Fulfillment of Master Degree in Critical Care Medicine

By

Ahmed Ibrahim Mohamed Abd El-Aziz

(M.B.B.Ch.)

Supervised by

Prof. Dr. Mohamed Ibrahim Mohamed Shehata

Professor of Anaesthesiology, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Dr. Rania Magdy Mohamed Ali

Assis. Professor of Anaesthesiology, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Dr. Rania Hassan Abdel Hafiez

Lecturer of Anaesthesiology, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2018

سورة التوبة الآية (١٠٥)

Aeknowledgment |

- First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.
- Really I can hardly find the words to express my gratitude to Prof. Dr. Mohamed Ibrahim Mohamed Shehata Professor of Anaesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.
- I would like also to express my sincere appreciation and gratitude to Dr. Rania Magdy Mohamed Ali, Assistant Professor of Anaesthesiology, Intensive Care and Pain Managemen, Faculty of Medicine, Ain Shams University, for her continuous directions and support throughout the whole work.
- Really I can hardly find the words to express my gratitude to Dr. Rania Hassan Abdel Hafiez Jecturer of Anaesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.
- Agst but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Subjects	Page
List of Abbreviations	
List of Tables	V
List of Figures	VI
Introduction	1
Aim of Work	3
Review of literature	
- Chapter I: Pathophysiology of heart failure	e4
- Chapter II: Management of heart failure	23
- Chapter III: Left Ventricular Assist Device	e50
- Chapter IV: Complications of LVAD	65
Summary	85
References	88
Arabic Summary	

List of Abbreviations

ACEIs : Angiotensin-converting enzyme inhibitors

ADH : Antidiuretic hormone

AF : Atrial fibrillation

AI : Aortic insufficiency

ANP : A-type natriuretic peptide

ARBs : Angiotensin receptor blockers

ARNI : Angiotensin receptor neprilysin inhibitor

ARVC : Arrhythmogenic right ventricular

cardiomyopathy

AUS : Anaemia of undetermined source of

bleeding

AVP : Arginine vasopressin

AvWS : Acquired von Willebrand syndrome

BNP : B-type natriuretic peptide

BTC : Bridge to candidacy

BTD : Bridge to decision

BTT : Bridge to heart transplant

CABG : Coronary artery bypass grafting

CAD : Coronary artery disease

CCS : Canadian Cardiovascular Society

CF-LVAD : Continuous flow left ventricular assist

device

CKD : Chronic kidney disease

CMR : Cardiac magnetic resonance

CNS : Central Nervous System

Flist of Aberrations &

CPAP : Continuous positive airway pressure

CRP : C-reactive protein

CRT : Cardiac resynchronization therapy

CTA : Computed tomography angiography

CTGF : Connective tissue growth factor

DCM : Dilated cardiomyopathy

DHA : Docosahexaenoic acid

DLI : Driveline infection

DT : Destination therapy

ECLS : Extracorporeal life support

ECM : Extracellular matrix

ECMO : Extracorporeal membrane oxygenation

EMA : European Medicines Agency

EPA : Eicosa-pentaenoic acid

EPPY : Event per patient year

GIB : Gastrointestinal bleeding

HCM : Hypertrophic cardiomyopathy

HDL : High-density lipoprotein

HF : Heart Failure

HFmrEF: Heart failure with mid range ejection

fraction

HFpEF: Heart failure with preserved ejection

fraction

HFrEF : Heart failure with reduced ejection fraction

HPA : Hypothalamic pituitary adrenal

HRV : Heart rate variability

HTx : Heart transplantations

Flist of Aberrations &

IABP : Intra-aortic balloon pump

ICDs : Implantable cardioverter-defibrillator

ICER : Incremental cost effectiveness ratio

IHD : Ischemic heart disease

INR : International normalised ratio

INTERMACS: Interagency Registry for Mechanically

Assisted Circulatory Support

LBBB : Left bundle branch block

LDH : Lactate dehydrogenase

LV : Left ventricular

LVAD : Left ventricular assist device

MCS : Mechanical circulatory suppor

MI : Myocardial infarction

MMP : Matrix metalloproteinase

MRAs : Mineralocorticoid-aldosterone receptor

antagonists

n-3 PUFAs : n-3 polyunsaturated fatty acids

NOACs: Non-vitamin K antagonist oral

anticoagulants

NPs : Natriuretic peptides

OMT : Optimal medical therapy

OSA : Obstructive sleep apnea

PDE3 : Phosphodiesterase 3

PPV : Positive pressure ventilation

PS-PEEP : Pressure support positive end-expiratory

pressure

PT : Pump thrombosis

Tist of Aberrations &

QALYs : Quality-adjusted life-years

RAAS : Renin–angiotensin–aldosterone system

RCTs : Randomized controlled trial

ROS : Reactive oxygen species

RVF : Right ventricular failure

SAVE : Survival AfterVenoarterial ECMO

SDB : Sleep disordered breathing

SNS : Sympathetic nervous system

STEMI : ST-elevated MI

sTNFR : Soluble tumor necrosis factor receptor

SVR : Systemic vascular resistance

TAH : Total artificial heart

TET : Transcutaneous energy transfer

TGF-β₁ : Tissue growth factor-beta1

TNFα : Tumor necrosis factor-α

VCE : Video capsule endoscopy

vWF : Von Willebrand factor

List of Tables

Table	Title	Page
1	Lietz-Miller-Score	57
2	Lietz-Miller-Score: risk stratification	58
3	INTERMACS-Level	59

List of Figures

Figure	Title	Page
1	Left ventricular assist device	50
2	Overview of different left ventricular assist devices.	52

Introduction

Heart failure is a challenging disease that ranges from patients who do well for many years with oral therapy to patients who require cardiac transplantation. For patients with advanced heart failure, multiple options are now available, including inotrope support (both inpatient and outpatient), cardiac transplantation, and long-term mechanical circulatory support (MCS) (*Joseph et al.*, 2016).

Heart transplantation remains the definitive therapy for patients with advanced heart failure; however, owing to limited donor organ availability and long wait times, continuous-flow left ventricular assist devices (CF-LVADs) have become standard therapy for the management of advanced heart failure both for patients who will eventually receive a transplant (bridge to transplantation) and as an option for those who may not qualify for transplant but qualify for long-term MCS (*Feldman et al.*, 2013).

The concept of using MCS began approximately 85 years ago when Dr Michael DeBakey, then a student at Tulane University, developed the roller pump. This important breakthrough eventually allowed for the development of the first heart and lung bypass machine. The first pulsatile LVAD HeartMate XVE (Thoratec Corp.)

was approved in 1994 as a bridge to heart transplantation and in 2003 was approved for destination therapy (*DeBakey*, 2016).

The mechanical assist devices were developed to provide patients with advanced heart failure an additional support option prior to transplantation. In the past several years, the indications have been expanded to include use as a bridge to transplantation, as a bridge to decision regarding transplantation, or as destination therapy for those who are not transplantation candidates (*Starling et al.*, *2011*).

LVAD use is promising, and has become standard therapy for advanced heart failure as a bridge to recovery, as destination therapy, and as a bridge to transplantation. Questions regarding MCS are shifting from which patients are candidates to receive an LVAD to how to choose the proper LVAD for an individual patient and how to prevent the complications of thrombosis, stroke, and pump failure (*Joseph et al.*, 2016).

Aim of the Work

The aim of the work is to highlight benefits of Left ventricular assist device (LVAD) and its role in the management of left side heart failure.

Pathophysiology of Heart Failure

Definition of heart failure:

HF often occurs as the terminal common pathway of any combination of cardiac conditions that affect the myocardium's productivity. It can be described as the inability of the heart to adequately fill or contract in order to meet the body's metabolic demands (*Jivraj et al.*, 2014).

HF is a clinical syndrome characterized by typical symptoms (e.g. breathlessness, ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary crackles and peripheral edema) caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/ or elevated intracardiac pressures at rest or during stress (*Filippatos et al.*, 2015).

The current definition of HF restricts itself to stages at which clinical symptoms are apparent. Before clinical symptoms become apparent, patients can present with asymptomatic structural or functional cardiac abnormalities [systolic or diastolic left ventricular (LV) dysfunction], which are precursors of HF. Recognition of these precursors is important because they are related to poor outcomes, and starting treatment at the precursor stage may reduce mortality in patients with asymptomatic systolic LV dysfunction (*Wang*, 2003).

Demonstration of an underlying cardiac cause is central to the diagnosis of HF. This is usually a myocardial abnormality causing systolic and/or diastolic ventricular dysfunction. However, abnormalities of the valves, pericardium, endocardium, heart rhythm and conduction can also cause HF (and more than one abnormality is often present). Identification of the underlying cardiac problem is crucial for therapeutic reasons, as the precise pathology determines the specific treatment used (e.g. valve repair or replacement for valvular disease, specific pharmacological therapy for HF with reduced ejection fraction (EF), reduction of heart rate in tachycardiomyopathy, etc) (*McMurray*, 2015).

Overview of HF Pathophysiology:

Myocardial damage regardless of etiology can cause a decrease in cardiac output, which stimulates a cascade of events dictated (mainly) by the sympathetic nervous system the renin–angiotensin–aldosterone (SNS) and system (RAAS) in order to restore cardiac output and supply enough oxygen to meet the increasing demands The main pathological preventing alterations the heart from functioning properly, thereby causing HF, are decreased preload, increased afterload, and reduced contractility/force of contraction that insufficiently pumps blood to the periphery. The most common cause of left ventricular systolic dysfunction is end-stage coronary artery disease,