Fixation of unstable femoral neck fractures in adults

A systematic review of literature

Submitted for partial fulfillment of Master degree in Orthopedic Surgery

Presented by

Gergis Nabil Benyameen Grais

M.B.B.Ch.

Under Supervision of

Prof.Dr.Ahmed Hassan Yousry

Assistant Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Dr.Shady Samir EL-Beshry

Assistant Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgement

First and forever ,thanks to «ALLAH», the Almightly ,the Gracious , who give us the knowledge and have given me the strength to achieve my work.

I wish to express my deepest appreciation and gratitude to *Prof*. *Dr. Ahmed Hassan Yosry*, Assist. professor of orthopedic surgery,

Faculty of Medicine, Ain Shams University, for his guidance, support,

for introducing me in to this exciting field of research.

I hope to express my deepest gratitude to *Dr. Shady Samir ElBeshry*, Assist. Professor of orthopedic surgery, Faculty of Medicine, Ain Shams University, for his beneficial guidance, valuable remarks, keen supervision and more support throughout this work.

Gergis Nabil Benyameen

Abstract

We conducted this systematic review to evaluate the effectiveness of methods used in fixation of unstable femoral neck fracture in adults and compare the results of fixation by DHS, cannulated screws, DCS, cephalomedullary nail, primary valgus intertrochantric osteotomy fixed by broad DCP., Targon femoral neck device and medial buttress plate augmentation of cannulated screws fixation.

Methods: We conducted our study by searching Medline and PubMed for studies about fixation of unstable femoral neck fractures in adults and we found twelve papers about different methods of fixation which met our inclusion and exclusion criteria.

Our specific outcome measures were Achieved union and complications of different methods of fixation of unstable femoral neck fractures in adults.

Results: that Targon femoral neck system achieved the best union rates, despite high rates of complications.followed by primary valgus osteotomy and also achieved lower complication rate from other methods of fixation.

Conclusion: management of unstable femoral neck fracture in adults by Targon femoral neck system achieved the highest union rate than other methods of fixation but,primary valgus osteotomy is a very good method but it's technically demanding and has different complications

Key words:

Unstable femoral neck fractures, pauwel's III, young adults, primary valgus osteotomy.

Contents

List of figures	6
List of tables	9
AIM OF THE WORK	16
Materials AND METHODS	18
Inclusion criteria:	19
Exclusion criteria:	20
Different methods of fixation	21
Results	39
Discussion	60
Summary	68
Conclusion	71
Recommendations	73
References	75
المأخور العرب	Frant Rookmark not defined

List of figures

Figure 1: AP radiograph of a patient measuring 58° dotted line represents
fracture line, white line is a horizontal line perpendicular to femoral shaft, black
line represents the femoral shaft ⁵ :
Figure 2: Axial:CT image shows typical findings of -59 degrees obliquity of
neck fracture (dotted white line) relative to the HNA (solid white line) and 53
degrees external rotation deformities ⁵ 13
Figure 3: Axial CT demonstrates inferior comminution (black arrow) and
inferior extent of fracture along anteromedial femoral neck with calcar deficiency
(white dotted line). ⁵ 13
Figure 4: Pauwel classification of femoral neck fracture ⁶ 14
Figure 5: Garden classification of femoral neck fracture ⁷ 15
Figure 6: fixation of femoral neck fractures using three parallel cannulated
screws ¹² 21
Figure 7: Addition of transverse calcar screw to two parallel cannulated screws
in fixation of femoral neck fracture ¹³ 21
Figure 8: fixation of femoral neck fracture using SHS + antirotational screw ¹⁴
23
Figure 9: fixation of femoral neck fracture using Dynamic condylar screw ¹⁶ 23

Figure 10: Fixation of femoral neck fracture by cephalomedullary nail ¹⁷ 24
Figure 11: medial buttress plating of femoral neck fracture ¹⁰ 25
Figure 12: Augmentation of femoral neck fractures fixed by cannulated screws
using medial buttress plate ¹³ 25
Figure 13: Incision for anterior approach of the hip ²¹
Figure 14: Identification and ligation of LFCA ascending branch ²¹ 20
Figure 15: Flexion and external rotation of the hip to allow placement of the
inferomedial plate ²⁰ 2
Figure 16: a) Maedial view of the femoral neck fracture line. b) Inferomedial
buttress plate position. c) Sawbones model showing position of the inferomedial
plate. ²¹ 28
Figure 17: Radiograph showing Targon FN (B-Braun AG, Melsungen,
Germany) implant ²²
Figure 18: :Preoperative radiograph showing displaced neck of femur
fracture. ²² 30
Figure 19: Radiograph showing fixed displaced neck of femur fracture ²² 30
Figure 20 : AP view shows augmentation of femoral neck fracture fixed with
cannulated screws by cement ²³
Figure 21:(a) Measurement of the pre-operative Pauwel angle34
Figure 22: AP and lateral view shows nonunion of femoral neck ²⁷ 35

Figure 23: lateral view showing AVN of femoral neck fractures ²⁹ 36
Figure 24 :AP view showing screw cut out of femoral neck fracture ³² 36
Figure 25: Tip Apex distance ³⁵
Figure 26: AP view showing fixation failure of femoral neck fracture 3238
Figure 27: Comparison between different methods of fixation regarding mean
age of patients51
Figure 28::Comparison between different methods of fixation regarding follow
up period:52
Figure 29::Comparison between different methods of fixation regarding union
rate53
Figure 30:Comparison between different methods of fixation regarding AVN.54
Figure 31: Comparison between different methods of fixation regarding
reoperation rate55
Figure 32:Comparison between different methods of fixed angle device
regarding union rate56
Figure 33:comparison between different fixed angle devices regarding AVN57
Figure 34:comparison between open and closed reduction with cancellous
coronic 50

List of tables

Table 1:summary of study and patient characteristics46
Table 2:Comparison between different methods of fixation regarding number
of patients, mean age, follow up period:50
Table 3: Comparison between different methods of fixation regarding union
rate52
Table 4: Comparison between different methods of fixation regarding
complications (nonunion, AVN ,reoperation rates)53
Table 5: Comparison between different methods of fixed angle device regarding
union rate55
Table 6:comparison between different fixed angle devices regarding
complications56
Table 7:comparison between open and closed reduction with cancellous
screws 57

Introduction

Introduction

Clinical aspect on femoral neck fractures

Femoral neck fractures in younger individuals usually result from high-energy trauma. A common injury pattern in this population is a transcervical vertical fracture extending toward the medial calcar and/or lesser trochanter. This vertical "fracture line" is best seen on an anteroposterior (AP) radiograph of the hip or pelvis and has been proposed to roughly approximate sagitally oriented fracture surfaces. Surgical repair of this unstable fracture is indicated, but no standard for operative internal fixation has been clinically proven to be superior at treating this injury pattern. The injury is affected by strong displacement forces across the hip that frequently lead to failure of fixation and malunion, with overall complication rates ranging from 20% to 86%. ¹⁻²

The significance of the high shear angle femoral neck fracture was recognized by Pauwels in the 1930, resulting in his classification scheme that categorizes the injury according to its "vertical" fracture angle: type 1, less than 30 degrees of Pauwels' angle, type 2:between $30-70^{\circ}$, type $3 > 70^{\circ}$.

A common clinical picture of femoral neck fracture patients is non ambulatory patient on presentation with shortening and external rotation in the lower limb

this is in displaced fractures . patient with non displaced or stress fracture typically lacks the deformity pattern and may be able to weight bear but the main complaint becomes groin pain .⁴

An accurate history is important in patients with femoral neck fractures especially in older individuals giving history of loss of consciousness, prior syncopal episodes, medical history, chest pain, prior hip pain (pathological fracture) and pre injury ambulatory status is very important in detection the method of treatment.⁴

Radiographic evaluation of femoral neck fracture depends on:

> X ray imaging :(fig 1)

Injury and immediate postfixation AP

radiographs must be assessed to
determine the femoral neck fracture
morphology. The pauwels angle is
determined by comparing the fracture line
with a line horizontal (perpendicular) to
the femoral shaft. The pauwels angle is
then confirmed by comparison with

Figure 1: AP radiograph of a patient measuring $58^{\rm o}$ dotted line represents fracture line, white line is a horizontal line perpendicular to femoral shaft , black line represents the femoral shaft 5 :

postfixation radiographs and 2-dimensional coronal CT.⁵Frog lateral view of the hip is contraindicated.⁴

CT imaging:

The vertical fracture angle is assessed on coronal CT as the angle between fracture line and a line perpendicular to the intramedullary canal (fig 1) and measured on axial CT as the angle between fracture angle and head neck axis (Fig.2). ⁵

The presence and characteristics of

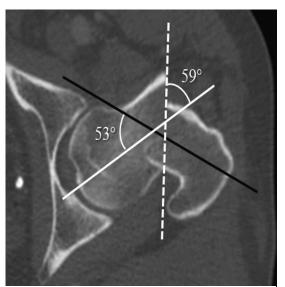


Figure 2: Axial:CT image shows typical findings of 59 degrees obliquity of neck fracture (dotted white line) relative to the HNA (solid white line) and 53 degrees external rotation deformities⁵

comminution, including location
[ie, the quadrant in which it was
centered (eg,inferior or posterior
or both)], fragmentation (single
vs. multiple fragments), and
extent (minor vs. major, with
major being defined as
measuring .1.5 cm in any

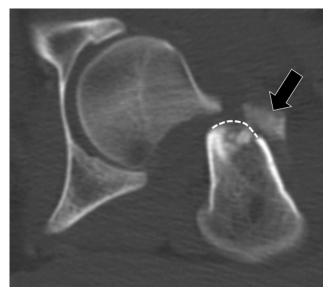


Figure 3 : Axial CT demonstrates inferior comminution (black arrow) and inferior extent of fracture along anteromedial femoral neck with calcar deficiency (white dotted line).⁵

dimension), are assessed on 2-dimensional and 3-dimensional CT imaging (Fig.3.).⁵

MRI imaging:

Is currently the imaging study of choice in non displaced or occult fractures when plain x ray is not evident .⁴

Pauwel classification of femoral neck fracture ³

This is based on the angle of fracture from horizontal plane (fig 4)

Type 1: < 30 °

Type 2: 31-70°

Type 3: $> 70^{\circ}$ (vertical

fracture pattern)

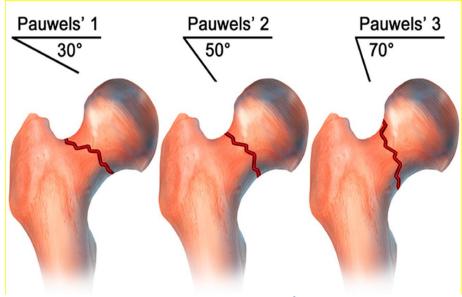


Figure 4: Pauwel classification of femoral neck fracture ⁶

There is also Garden classification of femoral neck

*fracture*⁴ (fig.5)

<u>Type 1</u>: incomplete / valgus impacted.

<u>Type 2</u>: complete and non displaced on AP and lateral views.

<u>Type 3</u>: complete with partial displacement

Trabecular pattern of femoral head does not line up with that of acetabulum

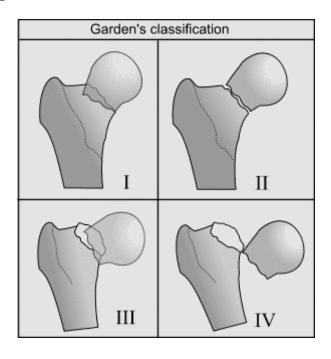


Figure 5: Garden classification of femoral neck fracture⁷

<u>Type 4</u>: completely displaced Trabecular pattern of the head assumes a parallel orientation with that of the acetabulum.

Treatment:

Aim of treatment:

1-to minimize patient discomfort.

2-restore hip function.

3-allow rapid mobilization by early anatomic reduction and internal fixation.