Ain Shams University Faculty of Science Entomology Department

Purification and Characterization of an Intracellular Lipase from the Greater Wax Moth, *Galleria mellonella* (Lepidoptera: Pyralidae)

A Thesis Submitted for the degree of Master of Science As a Partial fulfillment for requirements of the master of Science ''Entomology Department''

By

Rahma Raafat Zaky Mahdy

(B.Sc.) 2012

Demonstrator in Entomology Department, Faculty of Science, Ain Shams University

Supervisors

Prof. Dr. Emad M. S. Barakat

Professor of Insect Physiology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Marah M. Abd El-Bar

Associate Professor of Entomology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Shaimaa Ahmed Ahmed Mo'men

Lecturer in Entomology, Entomology Department, Faculty of Science, Ain Shams University

(2018)

Biography

Name: Rahma Raafat Zaky Mahdy

Date and place of birth: 15/12/1991, Cairo, Egypt

Degree awarded: B. Sc. (Entomology)

Department: Entomology

Faculty: Science

University: Ain Shams University

Date of graduation: June, 2012

Date of Appointment: February, 2013

Present Occupation: Demonstrator, Entomology Department,

Faculty of Science, Ain Shams University

Date of Registration: July, 2015

THESIS EXAMINATION COMMITTEE

NAME	TITLE	SIGNATURE	

SUPERVISORS

Prof. Dr. Emad Mahmoud Said Barakat

Professor of Insect Physiology, Faculty of Science Ain Shams University

Dr. Marah M. Abd El-Bar

Associate Professor, Faculty of Science Ain Shams University

Dr. Shimaa A. Mo'men

Lecturer in Entomology, Faculty of Science Ain Shams University

Approval sheet

M.Sc. thesis

Name: Rahma Raafat Zaky Mahdy

<u>Title:</u> Purification and Characterization of an Intracellular Lipase from the Greater Wax Moth, *Galleria mellonella* (Lepidoptera: Pyralidae)

Supervisions committee:

Prof. Dr. Emad M. S. Barakat

Professor of Insect Physiology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Marah M. Abd El-Bar

Associate Professor of Entomology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Shaimaa Ahmed Ahmed Mo'men

Lecturer in Entomology, Entomology Department, Faculty of Science, Ain Shams University

Examination committee:

Prof. Dr. Ahmed Salem Mohammad Ahmed Elebiary

Emeritus Professor of Entomology, Faculty of Science, Helwan University

Prof. Dr. El-Sayed H. Shaurub

Professor of Entomology, Faculty of Science, Cairo University

Prof. Dr. Emad M. S. Barakat

Professor of Insect Physiology, Entomology Department, Faculty of Science, Ain Shams University

ACKNOWLEDGEMENT

Thanks to "Allah" who enable me to complete this work, despite of all problems that faced me throughout my life.

I would like to express my deep gratitude and sincere appreciation to;

Prof. Dr. Emad M. S. Barakat: Professor of Insect Physiology, Entomology Department, Faculty of Science, Ain Shams University for suggesting the point of study, designing the plan of work, providing laboratory facilities, his patience, continuous encouragement, continuous advice, discussion, fruitful supervision for reading and correcting the manuscript, guidance and solving problems that faced me throughout my practical life.

Dr. Marah M. Abd El-Bar: Associate professor of Entomology, Entomology Department, Faculty of Science, Ain Shams University for continuous advice and critical reading of the manuscript.

Dr. Shimaa A. Mo'men: Lecturer of Entomology, Entomology Department, Faculty of Science, Ain Shams University for continuous encouragement, helpful advice, providing some laboratory chemicals and reading and correcting the draft.

Finally, Deep thanks and appreciation to all the stuff members and colleagues of Entomology Department, Faculty of Science, Ain Shams University, for their kind help and continuous cooperation.

DEDICATION

This thesis is dedicated to my dear family, specially my **Father**, my **Mother** and my **brothers** (Muhammed & Abd El-Rahman) for love, constant prayers, encouragement, continuous help and support throughout my whole life.

To my dear **Husband**, **Ahmed Mostafa** for scarifies he made, continuous help, support and encouragement he offered, throughout my study period.

Finally, to my lovely daughter **Sana** for many hours she spent without her mother around.

ABSTRACT

The present study has been conducted to purify intracellular fat body lipase and midgut lipase, for the first time, from last larval mellonella. Purification of Galleria methods instar combination of ammonium sulfate precipitation and gel filtration using Sephadex G-100, yielded a 98.9 and 49.15- fold purity and recovery of 50.81% and 18.3% for fat body lipase and midgut lipase, respectively. SDS-PAGE and zymogram revealed that the molecular weight of midgut lipase was 104.23 kDa, while fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore biochemical characterization of. fat body lipase and midgut lipase, was carried out through testing their activities against several factors such as; different temperatures, pHs, metal ions and inhibitors ending by determination of their kinetic parameters with the use of p-Nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35-37°C and 37-40°C and pH ranges of 7-9 and 7-10 for midgut and fat body lipase, respectively. The partially purified enzymes showed significant stimulation by Ca²⁺, K⁺ and Na⁺ metal ions indicating that both enzymes are metalloproteinases. Also, lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfony fluoride(PMSF), ethylene-diaminetetractic acid (EDTA) and ethylene glycoltetraacetic acid (EGTA) providing an evidence of presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 301.95mM $\rm K_m$ and 0.361 Umg $^{-1}$ $\rm V_{max}$ for fat body lipase and 381.46 mM $\rm K_m$ and 0.7893 Umg $^{-1}$ $\rm V_{max}$ for midgut lipase.

Key words: *Galleria mellonella*, purification, characterization, digestive lipase, midgut lipase, intracellular lipase and fat body lipase.

CONTENTS

	Page
I-INTRODUCTION	1
II-LITERATURE REVIEW	9
1- Insect lipids	9
1.1-Fat body and haemolymph lipids	11
1.1.1- Fat body lipids	12
1.1.2- Haemolymph lipids	15
• 1 1	
1.2- General aspects of insect lipid metabolism	20
1.3- Release of lipids from fat body	21
1.4- Fat body-haemolymph interrelationships during lipid release	23
2- Hydrolases	
3- Lipases	24 25
3.1- Microbial lipases	26
3.2- Plant lipase 3.3- Vertebrate lipase	28
3.4- Insect lipases	29
4- Detection of lipolytic activity	33
5- Purification of lipase	33
6- Characterization of purified lipase	36
6.1- Molecular weight	36
6.2- Effect of pH and temperature	37
6.3- Effect of metal ions and other compounds	40
6.4- Enzyme kinetics parameters (K _m and V _{max})	43
7- Biotechnological applications of lipases	43
7.1- Food industry	45
7.2- Organic chemistry	45
7.3- Chiral resolution	46
7.4- Lipase as biosensor	47
7.5- Lipases in bioremediation	47
7.6- Detergency and cleaning	48
7.7- Paper industry	48
7.8- Diagnostic tool	48
7.9- Medical applications	49
7.10- Other applications	49
III- MATERIALS AND METHODS	50
1- Rearing and maintenance of experimental insect	50

2- Processing of larval tissue homogenates	52
2.1- Larval tissue collection	52
2.1.1- Midgut collection	52
2.1.2- Fat body collection	52
2.2- Preparation of larval tissue homogenates	53
3- Determination of protein concentration	53
3.1- Preparation of the protein reagent	54
3.2- Preparation of standard protein solution	54
3.3- Construction of standard calibration curve	54
3.4- Estimation of the protein content in unknown sample	55
3.5- Calculation	56
4- Determination of lipase activity	56
5- Purification of fat body and midgut lipase	57
5.1- Ammonium sulphate [(NH ₄) ₂ SO ₄] precipitation	58
5.2- Sephadex G-100 gel filtration chromatography	61
6- Determination of molecular weight and purity of the purified lipase	62
(electrophoretic analysis)	62
6.1- Preparation of electrophoretic solutions	63
6.2- Preparation and casting of the gel	64
6.3- Sample preparation	65
6.4- Electrophoresis	65
6.5- Staining	
6.6- Scanning and analysis of the bands	65
7- Zymogram analysis	66
8- Determination of biochemical characteristics of the purified lipases	66
8.1- Effect of pH on lipase activity	66
8.2- Effect of temperature on lipase activity	67
8.3- Effect of mono- and di-valent cations on lipase activity	67
8.4- Effect of specific inhibitors on lipase activity	68
8.5- Kinetic parameters measurements	68
9- Statistical analysis	69
IV- EXPERIMENTAL RESULTS	70
1- Rearing and maintenance of <i>G. mellonella</i>	70
2- Protein content and lipase activity in larval midgut and fat body of <i>G. mellonella</i>	73
3- Partial purification of intracellular fat body lipase and midgut lipase	
from G. mellonella larvae	74
4- Determination of molecular weight and purity of the purified lipases	01
from G. mellonella larvae	81
5- Biochemical characterization of purified intracellular fat body lipase	95

and midgut lipase	
5.1- The effect of pH on lipase activity	
5.2- The effect of temperature on lipase activity	
5.3- Effect of mono- and di-valent cations on lipase activity	101
5.4- Effect of specific inhibitors on lipase activity	108
5.5- Kinetic parameters of purified lipasee from larval fat	115
body and midgut tissuses of G. mellonella	113
V- DISCUSSION AND CONCLUSION	117
1- Rearing and maintenance of <i>G. mellonella</i> larvae	117
2- Protein content and lipase activity in larval midgut and fat body of	110
G. mellonella	119
3- Purification of intracellular lipase and midgut lipase from <i>G</i> .	122
mellonella larvae	122
4- Determination of molecular weight and purity of the purified lipases	124
from G. mellonella larvae	124
5- Effect of pH on lipase activity	125
6- Effect of temperature on lipase activity	126
7- Effect of mono-and di-valent cations on lipase activity	128
8- Effect of specific inhibitors on lipase activity	129
9- Determination of kinetic parameters of digestive and intracellular	131
lipase	131
Conclusion and perspectives	
VI- SUMMARY	135
VII- REFRENCES	140
Arabic Summary	

ABREVIATIONS

AgNO₃ : Silver nitrate

AKH : Adipokinetic hormone
BSA : Bovine serum albumin

CaCl² : Calcium chloride

cAMP : Cyclic adenosine monophosphate

CBB : Coomassie brilliant blue

Cm³
Cubic centemeter
Conc.
Concentration
DAG
Diacylglycerol
DAGs
Diacylglycerides

EDTA : Ethylenediamine tetraacetic acid

EGTA : Ethylene glycol-bis(β-aminoethylether) N,N,N`,N`

tetraacetic acid

FeCl₃ : Ferric chloride FeSO₄ : Ferrous sulfate FFAs : Free fatty acids

g : Gram

G. mellonella : Galleria mellonella

h : Hour

HDL-C: High-density lipoprotein cholesterol

KCl : Potassium chloride

Km : Michaelis-Menten constant
LIPC : Gene produce hepatic lipase
LIPG : Gene produce endothelial lipase
LIPL : Gene produce lipoprotein lipase

mA : Milliamper

MAGMonoacylglycerolMAGsMonoacylglycerides

μg : Microgramμl : MicroliterμM : Micromolar

µmol/min/mg : Micromole per minute per milligram

mM : Millimolar mm : Millimeter

MUF-butyrate : 4-Methylumbelliferyl butyrate

mV : Millivolt

NaCl : Sodium chloride
NaOH : Sodium hydroxide
NL : Neutral lipids

nm
 nmol
 Pb(NO₃)₂
 PL
 Nanomole
 Lead dinitrate
 phospholipid

PMSF : Phenylmethylsulfony fluoride

P-NPB : *p*-Nitrophenyl butyrate

S II : Supernatant II S III : Supernatant III

SDS : Sodium dodecyl sulphate

SDS-PAGE : Sodium dodecyle sulphate polyacrylamide gel

electrophoresis

TAG : TriacylglycerolTAGs : Triacylglycerides

TEMED : N, N, N', N'-Tetramethylethylenediamine

Ul : Unitliter

Unit/min/ml: Unit per minute per milliliter

UV : Ultra violet

VLDL : Very low density lipoproteins

Vmax : Maximum velocity

LIST OF TABLES

Table	Table Title	
no.		
1	Protein content (mg/ml) and lipase activity (u) in	73
	fat body and midgut tissues of G. mellonella	
	larvae.	
2	Purification process of fat body lipase from G.	76
	mellonella larvae.	
3	Purification process of midgut lipase from G.	77
	mellonella larvae.	
4	Comparative analysis of molecular weight (MW)	84
	and relative concentration (band %) of SDS-	
	PAGE of purified fat body lipase from G.	
	mellonella larvae.	
5	Comparative analysis of molecular weight (MW)	85
	and relative concentration (band %) of	
	zymogram of purified fat body lipase from G.	
	mellonella larvae.	
6	Comparative analysis of molecular weight (MW)	90
	and relative concentration (band %) of SDS-	
	PAGE of purified midgut lipase from G.	
	mellonella larvae.	
7	Comparative analysis of molecular weight (MW)	92
	and relative concentration (band %) of	
	zymogram of purified midgut lipase from G.	
	mellonella larvae.	
8	Effect of pH on activity of purified fat body	96
	lipase from larvae of G. mellonella	
9	Effect of pH on activity of purified midgut lipase	96
	from larvae of G. mellonella.	
10	Effect of temperature on activity of purified fat	99
	body lipase from larvae of G. mellonella.	
11	Effect of temperature on activity of purified	99

	midgut lipase from larvae of G. mellonella.	
12	Effect of selected di- and mono-valent cations on	102
	specific activity of lipase purified from larval fat	
	body tissue of G. mellonella.	
13	Effect of selected di- and mono-valent cations on	103
	specific activity of lipase purified from larval	
	midgut tissue of G. mellonella.	
14	Effect of some inhibitors on specific activity of	109
	lipase purified from larval fat body tissue of G.	
	mellonella.	
15	Effect of some inhibitors on specific activity of	110
	lipase purified from larval midgut tissue of G.	
	mellonella.	
16	Kinetic parameters of purified lipase from larval	115
	fat body and midgut tissues of G. mellonella.	