

ON MARSHALL – OLKIN TECHNIQUE OF EXTENDING UNIVARITE DISTRIBUTIONS

A Thesis

Submitted for the Degree of Master of Science As
Partial Fulfillment for Requirements of the Master of
Science

(Mathematical Statistics)

Submitted by

WESAL EMHEMED RAMADAN AGHEL

Mathematic Department, Faculty of Science, Alzzawia University (2009)

Under the Supervision of Prof. Dr. Mohamed Gharib Mahmoud

Professor of Mathematical Statistics, Department of Mathematics Faculty of Science, Ain Shams University

Dr. Bahady Ibrahim Mohamed

Lecturer of Mathematical Statistics, Mathematics Department, Faculty Of Science, Al-Azhar University (men)

AIN SHAMS UNIVERSITY 2018

ACKNOWLEDGMENTS

All thanks and praise are due to Allah for his generosity and grace in helping me and making reasons, until I have completed this work.

I'm also pleased to express my deepest appreciation and thanks to my supervisors of the thesis,

Prof. Dr. Mohamed Gharib Mahmoud

Dr. Bahady Ibrahim Mohamed

For accepting responsibility to supervise and follow my research, from beginning, giving me their time and effort, submitting the exact proposals and recommendations that helped me making this work on this way.

Allah reward them immensely and remaining them as aluminiferous for science and scientists.

I would like also to record my great thanks to Department of Mathematics, Faculty of Science, Ain Shams University, for encouragement.

I also express my deepest thanks and grateful to my lovely country Libya for helping me to seek for acquiring highest positions in science.

I also thank my husband who supported me during preparation of my thesis, and also all thanks to my mother and father, God bless them. Finally, I grant all my modest effort to my children, Mohamed, Ahmed, Saji and Ghani.

.

CONTENTS

	Page
SUMMARY	I
CHAPTER (I)	
GENERAL MARSHALL - OLKIN FAMILY OF	
DISTRIBUTION	
1.1 Introduction	1
1.2 Marshall – Olkin Family	3
1.3 Characterizations of Marshall – Olkin Family	9
1.3.1 Stability of Marshall – Olkin family	9
1.3.2 Compounding	10
1.3.3 Stress – strength analysis	10
1.4 Some Marshall-Olkin Extended Family of Distributions	11
1.4.1 Marshall-Olkin extended exponential distribution	11
1.4.2 Marshall-Olkin extended Weibull distribution	12
1.4.3 Marshall-Olkin extended discrete uniform distribution	13
1.4.4 Marshall-Olkin extended uniform distribution	14
1.5 Generalization of Marshall-Olkin Family	14
1.5.1 Exponentiated Marshall-Olkin family	15
1.5.2 Negative Binomial extreme stable family	16
1.5.3 Markov-Bernoulli geometric-extreme family	17
1.6 Some Basic Concepts and Definitions	18
1.6.1 Censoring data (Type I and Type II)	19
1.6.2 Model selection.	19

CHAPTER (II)

THE MARSHAL-OLKIN EXTENDED INVERSE PARETO DISTRIBUTION AND ITS APPLICATION

			Page
2.1	Intro	oduction	23
2.2	The I	MOEIP Distribution	25
	2.2.1	Plots for the MOEIP pdf and hrf	27
2.3	Statis	stical Properties of MOEIP Distribution	28
	2.3.1	Moments of MOEIP distribution	28
	2.3.1	Incomplete Moments of MOEIP distribution	29
	2.3.2	Derivation of negative moments of MOEIP	
		distribution	30
	2.3.3	Moments of the residual life of MOEIP	
		distribution	31
	2.3.4	Moments of The reversed residual life of MOEIP	
		distribution	31
	2.3.5	Quantile function of MOEIP distribution	32
2.4	Ord	er Statistics of The MOEIP Distribution,,	33
2.5	Estima	ation of Parameters of The MOEIP Distribution	35
	2.5.1	Maximum Likelihood Estimation	35
	2.5.2	Maximum product spacing estimation	38
	2.5.3	Least squares estimation	40
2.6	Appl	ications of The MOEIP Distribution	41
	2.6.1	Simulation study	41
	2.6.2	Remission times of bladder cancer patients –	
		uncensored	42
	2.6.3	Leukemia data- censored	50

CHAPTER (III)

THE EXPONENTIATED MARSHALL-OLKIN DISCRETE UNIFORM DISTRIBUTION AND ITS APPLCATION

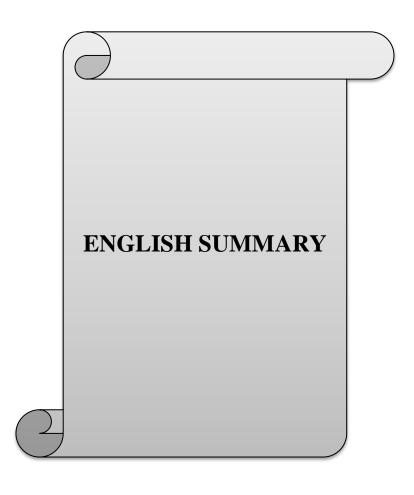
Page
3.1 Introduction53
3.2 Exponentiated Marshall- Olkin Discrete Uniform Distribution57
3.3 Reliability Properties of The E-MO-U Distribution61
3.3.1 The survival function61
3.3.2 The hazard rate and the cumulative hazard rate
functions61
3.3.3 The reversed hazard rate and the cumulative reversed
hazard rate function65
3.4 Expansion For The PMF And The CDF of The E-MO-U
distribution65
3.5 Statistical Properties of The E-MO-U Distribution
3.5.1 Quantile of the E-MO-U distribution66
3.5.2 Random numbers generation from E-MO-U
distribution67
3.5.3 The moments of the E-MO-U distribution68
3.5.4 Incomplete moments of the E-MO-U distribution69
3.5.5 Mean absolute deviations of the E-MO-U
distribution70
3.5.6 Shannon entropies of the E-MO-U distribution70
3.6 Order Statistics of The E-MO-U Distribution72
3.7 Stress-Strength Parameter of The E-MO-U Distribution73
3.8 Estimation of The E-MO-U Distribution
3.8.1 The Maximum Likelihood method

3.8.2 The Method of moments	78
3.9 Applications of The E-MO-U Distribution	78
3.9.1 Application: filing of the E-MO-U model	78
3.9.2 Application: number of ten shots fired from A	
rifle	82
References	85
Arabic Summary.	

LIST OF TABLES

Page
Table 1.1: Some special models of the MO-G family6
Table 2.1: Mean estimates, bias and root mean squared errors of α , β
and δ 42
Table 2.2: Descriptive statistic of the remission times of a bladder
cancer patients
Table 2.3: MLEs (standard errors in parentheses) to the remission
times of a bladder cancer patients46
Table 2.4: The measures $-\hat{\ell}$, AIC, CAIC, BIC, W*, A* and $K - S$ to
the remission times of a bladder cancer patients47
Table 2.5: MLEs of Leukemia data50
Table 2.6: the measures $-\hat{L}$, AIC, CAIC, BIC and HQIC of
Leukemia data51
Table 3.1: Expectation and standard deviation with different θ and γ
at $\alpha = 30$ 69
Table 3.2: Expectation and standard deviation with different θ and γ
at $\alpha = 100$ 69
Table 3.3: Entropy with different θ and γ at $\alpha = 30$
Table 3.4: Entropy with different θ and γ at $\alpha = 100$ 72
Table 3.5: Number of European Red Mites on Apple Leaves79
Table 3.6: MLEs (standard errors in parentheses) to Number of
European red mites on apple leaves80

Table 3.7: The measures AIC, BIC and KS test to Number of
European red mites on apple leaves81
Table 3.8: Numbers of failures of software observed over 62
weeks
Table 3.9: MLEs (standard errors in parentheses) and the measures
AIC and BIC to numbers of failures of software
observed over 62 weeks83


LIST OF FIGURES

Page
Figure 2.1: Plots of the MOEIP pdf for selected parameters values27
Figure 2.2: Plots of the MOEIP pdf for selected parameters values27
Figure 2.3: Plots of the MOEIP hrf for selected parameters values28
Figure 2.4: Plots of the MOEIP hrf for selected parameters values28
Figure 2.5 and 2.6: Plots of the MOEIP cdf and sf for selected
parameters values
Figure 2.7: The TTT plot of the remission times of a bladder cancer
Patients34
Figure 2.8: (a) Estimated densities of the MOEIP, W-PS, N-MW, A-
W and T-W distributions for the data. (b) Estimated cdf
function from the fitted MOEIP, W-PS, N-MW, A-W
and T-W distributions and the empirical cdf for the
data48
Figure 2.9: (a), (b), (c), (d) and (e) are the P-P plot for the MOEIP,
W-PS, N-MW, A-W and T-W distributions
respectively49
Figure 2.10: The estimated cdf function from the fitted of new
distribution and the empirical cdf for the data with
confidence interval of it51
Figure 3.1 (a): The PMF of the E-MO-U distribution for different
values of γ at $\alpha = 30$ and $\theta = 0.1$ 58

Figure 3.1 (b): The PMF of the E-MO-U distribution for different	nt
values of γ at $\alpha = 30$ and $\theta = 0.5$	58
Figure 3.1 (c): The PMF of the E-MO-U distribution for differe	nt
values of γ at $\alpha = 30$ and $\theta = 1$	59
Figure 3.1 (d):The PMF of the E-MO-U distribution different v	alues
of γ at $\alpha = 30$ and $\theta = 6$	60
Figure 3.2 (a): The hazard reat function of the E-MO-U distribu	ıtion
different values of γ at $\alpha=30$ and $\theta=0.1$	62
Figure 3.2 (b): The hazard reat function of the E-MO-U distribu	ıtion
different values of γ at $\alpha = 30$ and $\theta = 0.5$	63
Figure 3.2 (c): The hazard reat function of the E-MO-U distribu	ıtion
different values of γ at $\alpha = 30$ and $\theta = 6$	63
Figure 3.3: The theoretical versus the empirical PMF and CDF	for the
E-MO-U distribution	81
Figure 3.3: The theoretical versus the empirical PMF and CDF	for the
E-MO-U distribution	84

Keywords

The Marshal-Olkin extended inverse pareto distribution, Exponentiated Marshall-Olkin discrete uniform distribution , reliability analysis , maximum likelihood estimation.

English Summary

problems of establishing and extending new classes and families of discrete and continuous probability distributions are one of the most important research topics in the theory of distributions.

The Kotz and Vicari (2005) gave highlights the most important early developments of statistical distributions. Since 1980, research methods have begun to generate new distributions that tend to add new parameters to known statistical distributions.

This is probably due to the mathematical and analytic capabilities available in software such as \mathbf{R} (packages), Matlabm, Mable and Mathemahca, through which researchers can easily tackle problems with incomplete beta and gamma functions in generalized family.

The second reason lies in the characteristics of the curved tail of the new statistical distribution produced by adding one or more parameters to old distribution.

Thirdly, this parameters (s) induction has also proved to be helpful In improving the goodness of fit of the proposed family of distribution.

In (1997) Marshall and Olkin proposed a technique for adding a parameter to an existing distribution. Marshall and Olkin extended distributions offer a wide range of behavior than the basic distributions form which the are derived. The property that the extended form of distributions can have an testing hazard function depending on the value of the added parameter and therefore can be used to model real situation in a better manner than the basic distribution, resulted in

the detailed of Marshall and Olkin extended family of distribution.

The thesis consists of three chapters as follows:

Chapter I: presents basic concepts and characteristics of Marshall and Olkin distribution and some previous researches related to it. This chapter also gives a brief overview of new distributions generated by this method. The chapter and exposing with some generalizations of Marshall and Olkin generated of distributions.

Chapter II: This chapter introduces a new application of Marshall and Olin method to Inverse Pareto distribution. The statistical properties of the new model are discussed and maximum likelihood used to estimate parameters, quantile function, moments and order statistics. Finally, usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

The results of this chapter were published in the periodical: International Journal of Statistics and Probability.2017,

6(6), 71-84.

Chapter III: This chapter presents a new generalization of the Marshall and Olkin method presented by Sandhya and Prasanth (2014). We obtained a new distribution (EMOU) as an application for the proposed distribution. We studied some statistical properties of new model for example hazard rate function, quantile function and moments, then we numerically calculated the mean, the standard deviation, and Shannon's entropy of the given model at different values of parameters. To examine the performance of our new model in fitting several data we

use real set of data to compare the fitting of new model with some well-known models, which provides best fit to all of data.

The results of this chapter were published in the following periodical:

International Journal of Modern Engineering Research .2017, 7(8), 34-48