

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Impacts of Deep Excavations in the Greater Cairo Area on the Nearby Structures

Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In
CIVIL ENGINEERING
STRUCTURAL ENGINEERING DEPARTMENT

By

Marco Nabil Samy Masaoud

Supervised by

Prof. Dr. Ali Abdul Fattah Ali Ahmed

Professor of Geotechnical
Engineering
Structural Department
Faculty of Engineering
Ain Shams University

Dr. Sayed Mohamed El-Sayed

Associate Professor of Geotechnical Engineering Structural Department Faculty of Engineering Ain Shams University

Cairo - 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Marco Nabil Samy Masaoud

Thesis : Impacts of Deep Excavations in the Greater Cairo Area on the

Nearby Structures

Date: 05 / 08 / 2018

Degree : Master of Science in Civil Engineering (Structural Engineering)

EXAMINERS COMITEE

Name and Affiliation	Signature
Prof. Dr. Mohamed Abdullah El Khouly Professor of Geotechnical Engineering Faculty of Engineering Cairo University	
Prof. Dr. Fathalla Mohamed El-Nahhas Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Prof. Dr. Ali Abdul Fattah Ali Ahmed Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Dr. Sayed Mohamed El-Sayed Associate Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Marco Nabil Samy Masaoud

Thesis : Impacts of Deep Excavations in the Greater Cairo Area on the

Nearby Structures

Degree : Master of Science in Civil Engineering

SUPERVISORS COMITEE

Name and Affiliation	Signature
Prof. Dr. Ali Abdul Fattah Ali Ahmed Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Dr. Sayed Mohamed El-Sayed Associate Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

Date: 05 / 08 / 2018

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2018

College Board approval / / 2018

University Board approval

CURRICULUM VITAE

Name Marco Nabil Samy Masoud

Date of Birth 25, July 1991

Place of Birth Cairo, Egypt

Nationality Egyptian

Scientific BSc. of Structural Engineering, Faculty of Engineering,

Degree Ain Shams University, 2013

Current Job Teaching Assistant at Structural Engineering

Department, Faculty of Engineering, Ain Shams

University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of

M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the

Department of Structural Engineering, Faculty of Engineering, Ain

Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a

qualification at any other University or Institution.

Name: Marco Nabil Samy Masaoud

Signature:

Date: 05 / 08 / 2018

ACKNOWLEDGMENT

First and foremost, thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Prof. Dr. Ali Abdul Fattah Aly, Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his kind supervision, fruitful comments, and valuable advice.

My grateful appreciation also extends to Dr. Sayed Mohamed El-Sayed, Associate Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication, and encouragement throughout this research till its completion which is gratefully acknowledged and sincerely appreciated.

Most important, my deepest thanks and love for my father, mother, brother, and sister. Your constant and everlasting support is the reason I was able to finish this research.

ABSTRACT

The deep braced excavation with the use of concrete diaphragm walls, as side supports, has been increasingly applied in the Greater Cairo for several purposes such as basements, underground garages, cut-and-cover tunnels, and subway stations. The most challenging task for geotechnical engineers is to estimate the settlement associated with the trenching process, especially if the diaphragm wall is constructed near existing structures.

The escalating needs for an acceptable estimate of the deformations associated with deep excavations in the Greater Cairo call for gaining more perception of the behavior of deep excavation including the combined actions of trenching, excavation, dewatering and their effect on buildings. Consequently, reliable estimates of ground movements in future projects that have similar conditions can be made using the semi-empirical relationships developed from the geotechnical dedicated studies.

The objectives of the current research are acquiring the knowledge for deep excavation process effects on the surrounding areas and buildings, especially under the different geotechnical conditions of the Greater Cairo area, also, to provide design aids and semi-empirical relationships of the retaining wall straining actions and the deformations associated with deep braced excavations considering the different lithological and groundwater prevailing in the Greater Cairo area. In addition, developing a reliable numerical modelling of deep excavation considering the construction sequence, the available lithological, geotechnical and groundwater data related to the Greater Cairo area is of a great importance in the current research. To verify this model, ground surface and lateral wall deformations were investigated and compared with field measurement of case studies. Simple deformations envelopes were deduced based on numerical modeling of various case studies to be utilized in the prediction of the induced deformations due to deep excavation.

Keywords: Deep braced excavation; diaphragm wall, trenching, excavation, settlement, lateral wall deformations.

SUMMARY

This research deals with the impact of deep excavations on buildings in the Greater Cairo area under different geotechnical conditions. Simple deformations envelopes were deduced based on numerical modeling of various case studies verified by measurements performed in each case during and after construction process of the deep braced excavation supporting system. The main case study was Al Rashdan, based on SPT test results soil parameters were computed considering the variation of the number of blows within each soil layer which represent the most optimistic and pessimistic conditions for this layer. This variety supports our analysis logic to depend on an envelope at which soil parameters have upper, lower bounds and the most probable condition which lie between the upper and lower bounds. The required soil properties were assessed for each layer using correlations developed to estimate soil characteristics presented by Mayne (2006), Brinkgreve & Vermeer (1998), Hatanaka & Uchida (1996) and Kulhawy & Mayne (1990).

A probabilistic approach was utilized in determining the soil parameters in which the mean value for a certain parameter (µ) is considered the most probable value, noting that the mean value has 50% chance to be lower than the actual value and 50% chance to be higher than the actual value. Finite element analysis program PLAXIS 2D was used to simulate the case studies. A comparison of the results of the conducted envelopes with the empirical work was made to estimate settlement caused by deep excavations. The deduced simple envelopes were compared measurements performed in Al Rashdan, Rod El - Farag, Faisal Islamic Bank Tower, El-Dokki and El-Bohoos Stations and showed a good agreement with the measured settlements and lateral wall deformations. Thus, the results of the research can be used to facilitate the initial prediction of the induced settlement and lateral deformations result due to deep braced excavation in the Greater Cairo area.

The thesis consists of six chapters

Chapter (1) is the introduction to this research; it discusses the importance, the scope, and the main objectives of the research.

Chapter (2) is a literature review for the previous related studies. It describes general trends of the induced ground deformations due to deep excavations. It also addresses the distresses of buildings located in the proximity of the excavations. The different criteria for assessing the building damages caused by deep excavations are highlighted.

Chapter (3) presents a description of the finite element method that is utilized in the analyses. The analysis sequence and different types of utilized elements are illustrated. A special highlight is given on utilized constitutive laws and their suitability for the analyses.

Chapter (4) comprises the deformations envelopes that are developed by the analyses for case studies in the Nile Alluviums. The selected cases comprise walls configurations as well as different support systems. The envelopes are utilized in the prediction of the induced settlement and lateral deformations result due to the deep excavation in the Nile alluvium.

Chapter (5) presents the effect of different parameters on the estimated envelopes from the analyses of the previous case studies; the effect of activating bracing systems, applying a pre-stressing force on it and the variations of axial stiffness effect. In addition, the effect of wall thickness, its embedded depth, changing the excavation depth, increasing the plug layer thickness, and using a value for the effective cohesion in each soil layer were all studied to gain more insight to their effects on the produced

envelopes of deformations also to clarify the parameters that have a major impact on induced deformations.

Chapter (6) presents the summary and the conclusions of the research. Suggestions for future studies relevant to the subject are also presented in this chapter.

TABLE OF CONTENTS

TABLE (OF CONTENTSi
LIST OF	FIGURESvii
LIST OF	TABLES xviii
NOMEC	LATURExx
Chapter 1	1: Introduction1
1.1 Ir	ntroduction1
1.2 F	failure Costs in Underground Construction2
1.3 D	Deep Excavations3
1.4 S	oil Conditions in the Greater Cairo3
1.5 T	The Objective of this Study5
1.6 C	Outline of the Thesis5
Chapter 2	2: Literature Review7
2.1 In	ntroduction7
2.2 S	ources of Ground Movements Associated with Deep Excavations7
2.3 D	Deformations Associated with Deep Excavations8
2.3.1	Effect of the Installation of Diaphragm Walls15
2.3.2	Previous Studies in the Nile Alluviums

2.4 Ef	fects on Buildings	19
2.4.1	Building Damage	20
2.4.2	Classification of damage	22
2.4.3	Building Response Related to Excavations	25
2.4.4	Criteria for Damage to Buildings	28
2.4.5	Effect of Horizontal Strains	32
Chapter 3	: Finite Element Analysis Methodology and Numerical Modelin	g
		34
3.1 Int	troduction	34
3.2 Fi	nite Element Method	35
3.2.1	General	35
3.2.2	Analysis Procedure of Finite Element Method	36
3.2.3	Elements Shapes	38
3.2.4 Proble	Two-Dimensional Simulation of Special Three-Dimensional	41
3.3 Ma	aterial Modeling Basics	43
3.3.1	General	43
3.3.2	Stresses	44
333	Strains	45

3.4 C	Constitutive Material Models	46
3.4.1	Linear Elastic Constitutive Law	47
3.4.2	Nonlinear Elastic Constitutive Laws	47
3.4.3	Elastoplastic Constitutive Laws	48
3.4.4	Elasto-Visco Plasticity Constitutive Laws	55
3.5 S	Special FEM Aspects Related to the Models in this Thesis	55
3.5.1	Soil Material Models Used in this Research	57
Chapter 4	4 : Cases Studies	60
4.1 II	ntroduction	60
4.2 T	The Greater Cairo Alluviums	63
4.3 T	The Case Study of Al Rashdan	64
4.3.1	The Surrounding Buildings and the Monitoring System	65
4.3.2	Deep Excavation Supporting System	67
4.3.3	Soil Parameters	67
4.3.4	Wall and Struts Parameters	75
4.3.5	Building Effect	75
4.3.6	Numerical Analysis	76
4.4 R	Rod El - Farag Station Case Study	92
4.4.1	Site Condition	92

	4.4.2	Stages of Construction	96
	4.4.3	Active Bracing System	96
	4.4.4	Instrumentation Devices	97
	4.4.5	Soil Parameters Used in Numerical Analysis	101
	4.4.6	Diaphragm Walls and Slabs Properties	105
	4.4.7	Temporary Struts Properties	105
	4.4.8	Analysis of the Case Study	106
4	.5 The	e Faisal Islamic Bank Tower Case Study	117
	4.5.1	Construction Stages through the Monitoring Period	120
	4.5.2	Monitoring Programs	124
	4.5.3	Soil Parameters Used in Numerical Analysis	124
	4.5.4	Diaphragm Walls and Slabs Properties	126
	4.5.5	Temporary Tiebacks Properties	127
	4.5.6	Back Analysis of the Case Study	127
4	.6 El-	Dokki Station	133
	4.6.1	Deep Excavation Supporting System	134
	4.6.2	Soil Parameters Used in Numerical Analysis	137
	4.6.3	Diaphragm Walls and Slabs Properties	139
	4.6.4	Temporary Struts Properties	139