PHYSIOLOGICAL EVALUTION OF SOME CITRUS ROOTSTOCKS FOR VALENCIA ORANGE AND CHINESE TANGARINE YOUNG TREES UNDER SALINE CONDITIONS

By

ISLAM FRAHAT ZAKY HASSAN

B.Sc. Agric. Sc. (Horticulture), El-Monofiya University, 2004 M.Sc. Enviro. Sc. (Pomology), El-Sadat City University, 2009

A Thesis submitted in Partial Fulfillment

Of

The Requirements for The Degree of

in
Agricultural Sciences
(Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

PHYSIOLOGICAL EVALUTION OF SOME CITRUS ROOTSTOCKS FOR VALENCIA ORANGE AND CHINESE TANGARINE YOUNG TREES UNDER SALINE CONDITIONS

By

ISLAM FRAHAT ZAKY HASSAN

B.Sc. Agric. Sc. (Horticulture), El-Monofiya University, 2004M.Sc. Enviro. Sc. (Pomology), El-Sadat City University, 2009

This thesis for Ph.D. degree has been approved by:

Date of Examination: / /2018

Dr.Adel Mohamed Goda Prof. of Pomology, Faculty of Agriculture, Beni Suif University. Dr.Ahmed Abdelhamid Awad Associate Prof. of Pomology, Faculty of Agriculture, Ain Shams University. Dr.Nazmy Abdelhamid Abdel Ghany Prof. of Pomology, Faculty of Agriculture, Ain Shams University. Dr.Hassan Mohamed Fadel El-Wakel Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University.

PHYSIOLOGICAL EVALUTION OF SOME CITRUS ROOTSTOCKS FOR VALENCIA ORANGE AND CHINESE TANGARINE YOUNG TREES UNDER SALINE CONDITIONS

By

ISLAM FRAHAT ZAKY HASSAN

B.Sc. Agric. Sc. (Horticulture), El-Monofiya University, 2004 M.Sc. Enviro. Sc. (Pomology), El-Sadat City University, 2009

Under the supervision of:

Dr. Hassan Mohamed Fadel El- Wakeel

Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nazmy Abdelhamid Abdel Ghany

Prof. of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Bedour Helmy Abu Leila

Researcher Prof. Emeritus of Plant Physiology, Department of Water Relations, Agricultural and Biological Research Division, National Research Center

ABSTRACT

Islam Frahat Zaky Hassan: Physiological evaluation of some citrus rootstocks for Valencia orange and Chinese tangerine young trees under saline conditions .Unpublished Ph. D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2018.

In this work two field experiments were carried out during a three successive seasons of 2015/2016, 2016/2017 and 2017/2018 to evaluate the physiological response of foliar application of some antioxidants (salicylic and ascorbic acids) on Valencia orange and Chinese tangerine young trees grown under irrigation with saline water. The two Citrus varieties, Valencia orange (V. O) *Citrus sinensis.L. osbeck* and Chinese (Ponkan) mandarin (*Citrus reticulate*) were budded on three citrus rootstocks namely sour orange (*Citrus aurantum, mion*) ,Volkamer lemon (V. L) (*Citrus volkameriana*, Tem) and X639 hybrid between (*Citrus reticulate* × *Ponicurus trifoliata*).

As for Valencia orange, results showed that Volkamer lemon rootstock gave the highest values of most studied characters of vegetative growth (height increment percentage, stem diameter increment percentage, number of leaves increment percentage and leaf area cm²). As compared with other studied rootstocks with exception that with exception that salicylic acid was effective also on stem diameter and leaves number increment. In addition, the results revealed that, higher growth parameters were recorded by the interaction between Volkamer lemon rootstock and ascorbic acid at concentration of 800 ppm. As for physiological and biochemical constitutes (relative water content, proline content, protein content, total antioxidant capacity, carbohydrates content, chlorophyll a, chlorophyll b and carotenoids.) Volkamer lemon rootstock achieved the higher values most of the previous characters in combination with ascorbic acid and salicylic acid at 600 to 800 ppm with exception that X639 rootstock which achieved the higher carbohydrates and proline content, while Volkamer lemon achieved the least values. On the other hand Valencia orange budded on Volkamer lemon rootstock recorded the higher chemical content (macro elements: nitrogen, phosphorus, potassium ,calcium and micro elements ; zinc and magnesium) in combination with ascorbic acid and salicylic acid at 600 to 800 ppm, with exception that Sour orange accumulated the higher Magnesium content, on the other hand Volkamer lemon rootstock accumulated under saline conditions higher content of micro elements iron, zinc and manganese, the values increased gradually by treatment of antioxidants from 0 to 800 ppm concentrations. salicylic acid was more effective in concentration than ascorbic acid . As for endogenous hormones content Volkamer lemon rootstock achieved the higher hormonal content (indole acetic IAA acid and Gibberlinne GA) and the lower abscisc acid ABA, on the other hand both salicylic and ascorbic acids at 800 ppm in combination with Volkamer lemon rootstock reduce the harmful effects of salinity stress on Leaf anatomical structure compared with the control.

As for Chinese tangerine Results showed that, Volkamer lemon rootstock surpassed Sour orange and X639 rootstocks under saline conditions, the highest incremental percentage young tree height, stem diameter, number of leaves per shoot and leaf area were registered by Chinese tangerine scion budded on Volkamer lemon rootstock. Among selected antioxidants, ascorbic acid at the concentrations of 800 ppm recorded the highest significant values for vegetative growth parameters and surpassed salicylic acid. As for physiological and biochemical constitutes (relative water content, proline content, protein content, total antioxidant capacity, carbohydrates content, chlorophyll a, chlorophyll b and carotenoids.) Volkamer lemon rootstock achieved the higher values most of the those characters in combination with ascorbic acid and salicylic acid at 600 to 800 ppm with exception that X639 rootstock which achieved the higher carbohydrates and proline content, while Volkamer lemon achieved the least values.

Also Chinese mandarin scion budded on Volkamer lemon accumulated the higher concentrations of nitrogen (N), phosphorus (P), magnesium (Mg), and chloride (Cl⁻) and the lowest concentration of sodium (Na⁺). Chinese mandarin scion budded on sour orange rootstock accumulated the highest concentrations of potassium (K) while Chinese tangerine scion budded on X639 accumulated the highest concentrations of sodium (Na). In addition, the results revealed that, higher growth parameters were recorded by the interaction between Volkamer lemon rootstock and ascorbic acid at concentration of 800 ppm. The studied rootstocks exhibited insignificant differences in Fe concentration, while Volkamer lemon rootstock exhibited the higher zn and mn concentration under saline conditions .Volkamer lemon rootstock recorded the higher content of zn and mn when interacted with 800 ppm of salicylic acid for zn content and 800 ppm of ascorbic acid for Mn content .In this respect Sour orange registered the higher Fe concentration by 600 ppm of salicylic acid. As for endogenous hormones content Volkamer lemon rootstock achieved the higher hormonal content (indole acetic IAA acid and Gibberlinne GA) and the lower abscisc acid ABA, on the other hand the same rootstock reduce the harmful effects of salinity of the anatomical structure of leaves. .

Key words: Rootstocks, antioxidants, saline conditions.

ACKNOWLEDGEMENT

Praise worthy and gratitude to "ALLAH" for helping me, willing and patience to carry out this work.

I really express my great appreciation and gratitude to **Prof. Dr. Hassan Fadel El Wakeel** Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his valuable help and his continuous supervision during the progress of the study, the preparation and reviewing the manuscript and for his support during the course of this work.

Sincere appreciation is expressed to **Prof. Dr. Nezmy Abdelhamid** Prof. of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his support and solving problems.

Sincere appreciation is expressed to **Prof. Dr. Bedour Helmy Abu Leila** Prof. Emeritus of Plant Physiology, Department of Water Relations and Filed Irrigation, Agriculture and Biological Research Division, National Research Centre for her solving the problems, planning the experimental work and her continuous supervision during the progress of the study. Also the great efforts in writing and reviewing the manuscript.

Deep gratitude and thanks are offered to **Dr. Maybelle Saad Gaballah Prof.** of Plant Physiology, Department of Water Relations and Filed Irrigation, Agriculture and Biological Research Division, National Research Centre for her advice and support.

I am particularly grateful to all of my family for help and continuous encouragement during my study period and letting me work with a peaceful way.

CONTENTS

	Page
LIST OF TABLES	IV
INTRODUCTION	1
REVIEW OF LITERATURE	4
2.1-Effect of saline conditions on rootstocks:	4
2.1.1- Vegetative growth:	4
2.1.2. Physiological and chemical constituents:	5
2.1.2.1. Relative water content (RWC %):	5
2.1.2.2. Total protein and proline contents:	6
2.1.2.3. Total carbohydrates contents:	7
2.1.2.4. Total antioxidant capacity:	7
2.1.2.5. Photosynthetic pigments:	8
2.1.6. Leaf chemical constituents (macro and micro elements):	9
2.1.7. Yield and fruit quality:	10
2.2. Effect of salicylic acid on plant growth, physiological and	
biochemical constitutes under saline conditions:	11
2.2.1. Vegetative growth:	11
2.2.2. Physiological and biochemical constituents:	16
2.2.2.1. Relative water content (RWC %):	16
2.2.2.2. Protein and proline Content:	16
2.2.2.3. Shoot total carbohydrates content:	18
2.2.2.4. Total antioxidant capacity:	19
2.2.3. Photosynthetic pigments:	20
2.2.4. Leaf mineral content (Macro and Micro Elements):	23
2.2.5. Shoot endogenous hormones content:	27
2.2.6. Leaf anatomical structure:	27
2.2.7. Yield and fruit quality:	27
2.3. Effect of ascorbic acid on plant growth, physiological and	
biochemical constitutes under saline conditions:	28
2.3.1. Vegetative growth:	28
2.3.2. Physiological and biochemical constituents:	32

2.3.2.1. Relative water content (RWC %):	32
2.3.2.2. Protein and proline content:	32
2.3.2.3. Shoot total carbohydrates content:	34
2.3.2.4. Total antioxidant capacity:	35
2.3.3. Photosynthetic pigments:	36
2.3.4. Leaf mineral content (Macro and Micro Elements):	39
2.3.5. Shoot endogenous hormones content:	40
2.3.6. Leaf anatomical structure:	41
2.3.7. Yield and fruit quality:	43
MATERIALS AND METHODS	45
3.3. Vegetative Growth Parameters	48
3.3.1. Young tree height (Increment percentage)	48
3.3.2. Stem diameter increment percentage	48
3.3.3. Number of leaves increment percentage	48
3.3.4. Leaf area (cm ²)	49
3.4. Physiological and biochemical constitutes	49
3.4.1. Relative water content (RWC)	49
3.4.2. Leaf proline content	50
3.4.3. Shoot total protein percentage %	51
3.4.4. Shoot total carbohydrates	51
3.4.5. Leaf total antioxidant capacity (TAC)	51
3.5.1. Leaf photosynthetic pigments	52
3.6. Leaf mineral contents (macro and micro elements)	52
3.7. Shoots endogenous hormones content	53
3.8. Leaf anatomical structure	54
3.9. Yield and fruit quality	54
3.9.1. Yield	54
3.9.2. Fruit quality	54
3.10. Statistical analysis:	55
RESULTS AND DISCUSSION	56
4.1. The first experiment: Valencia orange:	56
4.1.1. Vegetative growth.	56

4.1.2.1. Height increment percentage of Valencia orange	
young tress	56
4.1.2.2. Stem diameter increment percentage of Valencia	
orange young tress	59
4.1.2.3. Number of leaves increment percentage of Valencia	
orange	62
4.1.2.4. Leaf area (cm ²) of Valencia orange young trees	65
4.1.2. Physiological and chemical constitutes	71
4.1.2.1. Relative water content (RWC %) of Valencia orange	
young trees	74
4.1.2.2. Leaf proline content (mg/100g d.w.) of Valencia	
orange young trees	77
4.1.2.3. Shoot total protein percentage of Valencia orange	
young trees.	80
4.1.2.4. Shoot total carbohydrate (mg/100g d.w) of Valencia	
orange young trees	83
4.1.2.5. Shoot total antioxidant capacity (mg AAE/g ext.) of	
Valencia orange young trees	86
4.1.3. Leaf photosynthetic pigment of Valencia orange young	
trees	89
4.1.3.1. Leaf chlorophyll a content (mg/g f.w) of Valencia	
orange young trees	89
4.1.3.2. Leaf chlorophyll b content (mg/g f.w) of Valencia	
orange young trees	92
4.1.3.3. Leaf carotenoids content (mg/g f.w) of Valencia	
orange young trees	95
4.1.4. Chemical constituents (Leaf macro and micro mineral	
elements)	100
4.1.4.1. Leaf nitrogen (N) percentage of Valencia orange	100
young trees	100
4.1.4.2. Leaf phosphorus (P) percentage of Valencia orange	100
young trees	103