

Ain Shams University Faculty of Science Chemistry Department

Kinetics of complexation of transition metal ions with some organic acids in various media

A Thesis Submitted by

Mahmoud Abd Elnaby Ahmed Abd Eltwab

B.Sc., Chemistry Department, Faculty of Science, Ain Shams University (2010)

"A thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc., Physical Chemistry) at Chemistry Department, Faculty of Science, Ain Shams University"

Supervised by

Prof. Dr. Hesham Ahmad Aly Medien

Prof. of Physical Chemistry
Faculty of Science
Ain Shams university

Dr. Hesham Samir Abdel-Samad

Lecturer of Physical Chemistry
Faculty of Science
Ain Shams university

Ain Shams University Faculty of Science Chemistry Department

APPROVAL SHEET

Kinetics of complexation of transition metal ions with some organic acids in various media

A Thesis Submitted by

Mahmoud Abd Elnaby Ahmed Abd Eltwab

B.Sc., Chemistry Department, Faculty of Science, Ain Shams University (2010) For M.Sc., Degree in Physical Chemistry

Thesis Supervisors

Thesis Approved

Prof. Dr. Hesham Ahmad Aly Medien

Professor. of Physical Chemistry, Faculty of Science, Ain Shams university

Dr. Hesham Samir Abdel-Samad

Lecturer of Physical Chemistry
Faculty of Science, Ain Shams university

Head of Chemistry Department Prof. Dr. Ibrahim Housiny Ali Badr

Professor of Analytical Chemistry, Faculty of Science, Ain Shams university

Contents

		Page
Acknowledgment		I
Abstract		II
List of	Tables	VI
List of	Figures	VII
List of	Abbreviations	XIV
Chapt	er 1: Introduction	
1.1	Kinetics of complexation reactions of Cr(III)	1
1.1	ion with Nicotinic acid	1
1.1.1	Chemistry of chromium(III)	2
1.1.2	Nicotinic acid	2
1.1.3	Literature review	4
1.2	Kinetic oxidation reactions of Cr(III)	9
1,2	complexes	
1.2.1	Redox reactions of chromium(III)	9
1.2.2	Literature review	10
1.3	Kinetics of complexation reactions of Fe (III)	13
1.0	ion	10
1.3.1	General Aspects of Iron Complex Chemistry	13
1.3.2	Importance of amino acids and their	14
1.3.2	derivatives as complexing agents	14
1.3.3	Iron Complexes in Organic Chemistry	15
1.3.4	Literature review	16
Chapt	er 2: Experimental	
2.1	Materials and Methods	26
2.1.1	Chemicals	26
2.1.2	Apparatus	29
2.2	General procedure of kinetic studies	29
2.2.1	Chromium – Nicotinic acid complex	29
2.2.2	Oxidation reaction	29
2.2.3	Kinetics of Fe(III) with N-phthaloylglycine	30

Chapter 3:	Results and	discussion
------------	-------------	------------

3.1	Kinetics of complexation reactions of Cr(III)	22
	ion with Nicotinic acid	33
3.1.1	Kinetic Experiments	35
3.1.2	Factors affecting the rate of reaction	39
3.1.3	Stoichiometry of the reaction product	56
3.1.4	Chelation of CrIII with nicotinic acid	58
3.1.5	Activation Parameters	62
3.1.6	Proposed Mechanism	65
2.0	Oxidation of chromium (III)-nicotinate	69
3.2	complex by periodate	UY
3.2.1	Oxidation products	69
3.2.2	Factors affecting the rate of reaction	70
3.2.3	Mechanism of the oxidation reaction	82
3.3	Kinetic complexation of ferric ion with N-	95
3.3	phthaloylglycine	93
3.3.1	Kinetic Experiments Results	96
3.3.2	Factors affecting the rate of reaction	99
3.3.3	Mechanism of the reaction	111
3.3.4	FTIR of Fe(III)-Phy.Gly complex	114
	Summary and conclusions	116
	Appendix	118
	References	133

Acknowledgements

First and last thanks to Allah who gave me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my deepest gratitude and indebtedness to Prof. Dr. Hesham A. Medien, professor of physical chemistry, Faculty of Science, Ain Shams university, for giving me the chance to be one of his students, supervising the whole work and for his guidance during and up to completion of the thesis.

Besides, I would like to express my thanks to Prof. Dr. Zeinab Abou Gamra, professor of physical chemistry, Faculty of Science, Ain Shams university, and Dr. Micheal Fahmy, associated professor of physical chemistry, Faculty of Science, Ain Shams university, for their valuable advisement, criticism and guidance during the first part of research work.

I would like also to express my thanks to Dr. Hesham Samir Abdel-Samad, Lecturer of physical chemistry, Faculty of Science, Ain Shams university, for his continuous encouragement and support during the second part of research and the writing of this thesis.

Last but not the least, I would like to thank my family: for supporting me spiritually throughout writing this thesis.

Abstract

Kinetic study of formation of 1:2 complex between chromium (III) and nicotinic acid in weak acid aqueous solution was investigated spectrophotometrically at λ =575 nm. Experimental results showed that the reaction took place in multiple steps. Increasing hydrogen ion concentration led to a decreasing in the reaction rate. The rate constants k_{Iobs} and k_{2obs} increased with decreasing the dielectric constant of the reaction medium indicating that the reaction is an ion pair type.

The kinetics of oxidation of chromium nicotinate complex by NaIO₄ to Cr(VI) have been studied spectrophotometrically. The reactions exhibited biphasic kinetic behavior through which an intra molecular electron transfer process took place.

The kinetics of substitution of aquo-ligand from hydroxopenta-aquo Ferric (III) by N-Phthaloylglycine in aqueous medium has been studied spectrophotometrically. The rate law involving the formation of ion-pair has been established in the pH 2.8 and 50°C.

Keywords

Kinetics, substitution, Chelation, Complexaion

Oxidation, Ionic strength, Dielectric constant, Temperature,

Order, Rate constant, Initial rate, Mechanism.

List of Tables

Table I Observed first order rate constants for the reaction of nicotinic acid (5x10 ⁻² mole.dm ⁻³) with various concentrations of Cr (III) at 40°C and pH=440
Table II Observed first order rate constants for the reaction of Cr (III) nicotinic acid $(5x10^{-3} \text{ mole.dm}^{-3})$ with various concentrations of nicotinic acid at 40° C and two different hydrogen ion concentrations.
Table III Kinetic data for the reaction of Cr (III) with nicotinic acid in different ionic strength concentrations (μ) and with two hydrogen ion concentrations; [Cr(III)] = $5x10^{-3}$ mol.dm ⁻³ and [nic] = $5x10^{-2}$ mol.dm ⁻³ . at 40° C
Table IV Kinetic data for the reaction of Cr (III) with nicotinic acid at various dielectric constants; $[Cr(III)] = 5x10^{-3} \text{ mol.dm}^{-3}$ and $[nic] = 5x10^{-2} \text{ mol.dm}^{-3}$. at 35°C and pH =449
Table V Kinetic data for the reaction of Cr (III) with nicotinic acid at various temperatures and hydrogen ion concentrations; $[Cr(III)] = 5x10^{-3} \text{ mol.dm}^{-3} \text{ and } [\text{nic}] = 5x10^{-2} \text{ mol.dm}^{-3}53$
Table VI The calculated activation parameters for the reaction of Cr III $[5x10^{-2}]$ mol.dm ⁻³ and nicotinic acid $[5x10^{-2}]$ mol.dm ⁻³ at pH =4.
Table VII Comparison of rate constant and activation parameters of analogous systems
Table VIII Dependence of k_{obs} on the initial Chromium nicotinate complex at $[IO_4^-] = 0.01$ M, pH = 3.5, $\mu = 0.11$ mole.dm ⁻³ and t = 35°C

Table IX Dependence of k_{obs} on periodate concentrations at [complex] = 10^{-3} mole.dm ⁻³ , at different pH values, $\mu = 0.11$ mole.dm ⁻³ and t =35°C
Table X Dependence of observed rate constants k_{obs} on the ionic strength concentrations (μ) at [Cr(III)-Nicotinate complex] ⁺² = $1x10^{-3}$ mol.dm ⁻³ , [IO ₄ ⁻] = $1x10^{-2}$ mol.dm ⁻³ , at t =35°C and pH =3.5
Table XI Dependence of k_{obs} on temperatures and pH at $[CrIII(nic)_2(H_2O)_2]^{+2}=1x10^{-3}$ mol.dm ⁻³ and $[IO_4^-]=1x10^{-2}$ mol.dm ⁻³ . $\mu=0.11$ mole.dm ⁻³ .
Table XII Enthalpies and Entropies of activation of the oxidation of some chromium(III) complexes by sodium periodate. 94
Table XIII Initial rate constants for the reaction between FeIII and N-phthaloylglycine at pH = 2.8 and at 50° C
Table XIV . Dependence of initial rate and the rate constant on the dielectric constant \mathcal{E} at [FeIII] = 24×10^{-4} mol.dm ⁻³ 104
Table XV Dependence of initial rate and rate constant on the ionic strength μ at [FeIII] = $24x10^{-4}$ mol.dm ⁻³ and [Ph.Gly] = $24x10^{-4}$ mol.dm ⁻³ , and at 50°C
Table XVI Dependence of initial rate and rate constants on the pH values at [FeIII] = 24×10^{-4} mol.dm ⁻³ and [Ph.Gly] = 24×10^{-4} mol.dm ⁻³ . at 50°C
Table XVII Dependence of the rate of reaction and rate constants on the temperature at [FeIII] = 24×10^{-4} mol.dm ⁻³ and [Ph.Gly] = 24×10^{-4} mol.dm ⁻³

Table XVIII	The calculated activation parameters for the	
reaction of Fe	III [24x10 ⁻⁴] mol.dm ⁻³ and Ph.Gly [24x10 ⁻⁴]	
mol.dm ⁻³ at pH	=2.8•	.110

List of Figures

Fig. 1 The relationship between the absorbance of the Fe–Ph.Gly complex and the concentration of Fe ³⁺ at 50°C, pH =2.8. μ =0.1 and dielectric constant 75	.32
Fig. 2 Absorbance spectra of a chromium(III)-nicotinate mixture at various times after mixing[Cr (III)] = $2.5x10^{-2}$ mole.dm ⁻³ , [nic] = $5x10^{-2}$ mole.dm ⁻³ , t = 40° C, pH=4 and μ = 0.11 mole.dm ⁻³ .	.36
Fig. 3 A typical non-linear plot of $\ln (A_{\infty} - A_t)$ versus time at $[Cr(III)] = 5x10^{-3} \text{ mol dm}^{-3}$, $[\text{nic}] = 5x10^{-2} \text{ mol dm}^{3}$, $t = 40^{\circ}\text{C}$ and pH=4. And a plot of $\ln\Delta$ versus time	.38
Fig. 4 First order plots for the reaction of Cr (III) and nicotinic acid at various chromium (III) concentrations; $[nic] = 5x10^{-2}$ mole.dm ⁻³ , t=40°C and pH=4.	.39
Fig. 5 First order plots for the reaction of Cr (III) and nicotinic acid at various nicotinic acid concentrations, [Cr (III)]=5x10 ⁻³ mole.dm ⁻³ , t =40°C and pH 4.	.41
Fig. 6 First order plots for the reaction of Cr (III) and nicotinic acid at various nicotinic acid concentrations; [Cr (III)]=5x10 ⁻³ mole.dm ⁻³ , t =40°C and pH=3.6	.41
Fig. 7 Variation of log k_{obs} with log [nic], [Cr (III)] = $5x10^{-3}$ mole.dm ⁻³ , at t = 40° C and pH=4.	.42
Fig. 8 Variation of log k_{obs} with log [nic], [Cr (III)] = $5x10^{-3}$ mole.dm ⁻³ , at t = 40° C and pH=3.6	.43

Fig. 9: First order plots for the reaction of Cr (III) and nicotinic acid at various ionic strengths; [Cr (III)] = 10^{-2} mole.dm ⁻³ , [nic] = $5x10^{-2}$ mole.dm ⁻³ , t = 40° C and pH= 4 44
Fig. 10 First order plots for the reaction of Cr (III) and nicotinic acid at various ionic strengths; [Cr (III)] = 10^{-2} mole.dm ⁻³ , [nic] = 5×10^{-2} mole.dm ⁻³ , t = 40° C and pH=3.644
Fig .11 A plot log k_{obs} and $\sqrt{\mu}$, for the reaction of Cr (III) and nicotinic acid at various ionic strengths; [Cr (III)] = 10^{-2} mole.dm ⁻³ , [nic] = $5x10^{-2}$ mole.dm ⁻³ at t = 40° C and pH 445
Fig12 A plot log kobs and $\sqrt{\mu}$, for the reaction of Cr (III) and nicotinic acid at various ionic strengths; [Cr (III)] = 10-2 mole.dm ⁻³ , [nic] = $5x10^{-2}$ mole.dm ⁻³ at t = 40° C and pH 3.646
Fig .13 First order plots for the reaction of Cr (III) and nicotinic acid at different dielectric constants of ethanol / water mixtures; [Cr (III)] $=5x10^{-3}$ mole.dm ⁻³ ; [nic] $=5x10^{-2}$ mole.dm ⁻³ , $t = 35$ °C and pH=4
Fig. 14 First order plots for the reaction of Cr (III) and nicotinic acid at different dielectric constants of 1,4 - dioxan / water mixtures; [Cr (III)] =5x10 ⁻³ mole.dm ⁻³ , [nic] =5x10 ⁻² mole.dm ⁻³ , t =35°C, pH=4
Fig. 15 A plot of log k_{obs} with 1/E of the rate of reaction between Cr (III) and nicotinic acid at different dielectric constants of ethanol/ water mixtures; Cr(III)= $5x10^{-3}$ mole.dm ⁻³ , [nic]= $5x10^{-2}$ mole.dm ⁻³ at t= 35° C and pH=4
Fig. 16 A plot of log k_{obs} with 1/E of the rate of reaction between Cr (III) and nicotinic acid at different dielectric constants of 1,4 - dioxan / water mixtures; Cr(III)= $5x10^{-3}$ mole.dm ⁻³ , [nic]= $5x10^{-2}$ mole.dm ⁻³ at t= 35° C and pH=450

Fig .17 First order plots for the reaction of Cr (III) and nicotinic acid at various hydrogen ion concentrations; [Cr (III)] = 5×10^{-3} mole.dm ⁻³ , [nic] = 5×10^{-2} mole.dm ³ and t = 35 °C51
Fig. 18 First order plots for the reaction of Cr (III) and nicotinic acid at various hydrogen ion concentrations; [Cr (III)] = 5×10^{-3} mole.dm ⁻³ , [nic] = 5×10^{-2} mole.dm ⁻³ and t = 40° C51
Fig. 19 First order plots for the reaction of Cr (III) and nicotinic acid at various hydrogen ion concentrations; [Cr (III)] = 5×10^{-3} mole.dm ⁻³ , [nic] = 5×10^{-2} mole.dm ⁻³ and t = 45 °C
Fig. 20 First order plots for the reaction of Cr (III) and nicotinic acid at various hydrogen ion concentrations; [Cr (III)] $= 5 \times 10^{-3}$ mole.dm ⁻³ , [nic] $= 5 \times 10^{-2}$ mole.dm ³ and $t = 50^{\circ}$ C
Fig. 21 Plot of $\ln k_{obs}$ versus 1/T; [Cr (III)]= $5x10^{-3}$ mole.dm ⁻³ , [nic]= $5x10^{-2}$ mole.dm ⁻³ and pH=454
Fig. 22 Variation of $\log k_{lobs}$ with [H ⁺], [Cr(III)] = 5×10^{-3} mol.dm ⁻³ and[nic] = 5×10^{-2} mol.dm ⁻³ .at different temperatures55
Fig. 23 Variation of $\log k_{2obs}$ with [H ⁺], [Cr(III)] = 5×10^{-3} mol.dm ⁻³ and[nic] = 5×10^{-2} mol.dm ⁻³ .at different temperatures56
Fig 24 . Plot of log (A-A $_0$)/(A $_\infty$ - A) Vs. log(nic), [Cr (III)] = 10^{-2} mole.dm $^{-3}$, t = 40° C, μ = 0.11 mole.dm $^{-3}$, (a):pH=4 and (b): pH=3.6.
Fig. 25 The Method of Continuous Variation, [Cr (III)] =[nic]= 10^{-3} mole.dm ⁻³ , t = 40° C, μ = 0.11 mole.dm ⁻³ , (a):pH=4 total volume 10ml.
Fig. 26 Isokinetic plot for the substitution of water in [Cr(H ₂ O) ₆] ⁺³ by various ligands

Fig .27 FTIR Spectra of uncomplexed nicotinic acid and after complexing with Cr (III)
Fig .28 Change in absorbance as a function of time: [Cr(III)-nic]= $1.0x10^{-3}$ mol dm ⁻³ , [IO ₄ ⁻] = 2 x 10^{-2} mol.dm ⁻³ , I = 0.02 mol.dm ⁻³ , pH = 3.2, t = 35°C
Fig .29 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different complex concentrations; [NaIO ₄] = 10^{-2} mole.dm ⁻³ , μ = 0.11 mole.dm ⁻³ at t =35°C and pH=3.5.
Fig30 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different complex concentrations of sodium periodate [NaIO ₄]. [Complex] = 10^{-3} mole.dm ⁻³ , $\mu = 0.11$ mole.dm ⁻³ at t =35°C and pH=2.472
Fig. 31 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different complex concentrations of sodium periodate [NaIO ₄]. [Complex] = 10^{-3} mole.dm ⁻³ , $\mu = 0.11$ mole.dm ⁻³ at t =35°C and pH=2.773
Fig. 32 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different complex concentrations of sodium periodate [NaIO ₄]. [Complex] = 10^{-3} mole.dm ⁻³ , $\mu = 0.11$ mole.dm ⁻³ at t =35°C and pH=3.573
Fig. 33 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different complex concentrations of sodium periodate [NaIO ₄]. [Complex] = 10^{-3} mole.dm ⁻³ , $\mu = 0.11$ mole.dm ⁻³ at t =35°C and pH=4.574
Fig. 34 Plot of $1/k_{1obs}$ versus $1/[IO_4]$ at different pH values75
Fig. 35 Plot of $1/k_{2obs}$ versus $1/[IO_4]$ at different pH values76

Fig. 36 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different ionic strengths concentrations; [Complex] = 10^{-3} mole.dm ⁻³ [NaIO ₄] = 10^{-2} mole.dm ⁻³ , = 0.11 mole.dm ⁻³ at t = 35°C and pH = 3.577
Fig. 37 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different pH values; [Complex] = 10^{-3} mole.dm ⁻³ [NaIO ₄] = 10^{-2} mole.dm ⁻³ , μ = 0.11 mole.dm ⁻³ at t =35°C
Fig. 38 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different pH values; [Complex] = 10^{-3} mole.dm ⁻³ [NaIO ₄] = 10^{-2} mole.dm ⁻³ , μ = 0.11 mole.dm ⁻³ at t = 40° C
Fig. 39 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different pH values; [Complex] = 10^{-3} mole.dm ⁻³ [NaIO ₄] = 10^{-2} mole.dm ⁻³ , μ = 0.11 mole.dm ⁻³ at t =45°C
Fig. 40 First order plots for the reaction of Cr(III)-Nicotinate complex with sodium periodate at different pH values; [Complex] = $10^{\text{-3}}$ mole.dm ⁻³ [NaIO ₄] = $10^{\text{-2}}$ mole.dm ⁻³ , μ = 0.11 mole.dm ⁻³ at t =50°C80
Fig. 41 . Variation of log k_{lobs} with pH, [Cr(III)-nic] =10 ⁻³ mol dm ⁻³ , [NaIO ₄] = 10 ⁻² mol dm ⁻³ and different temperatures81
Fig. 42 . Variation of log log k_{2obs} with pH, [Cr(III)-nic] = 10^{-3} mol dm ⁻³ , [NaIO ₄] = 10^{-2} mol dm ⁻³ and different temperatures82
Fig. 43 Variation of k_{1obs} with k_{2obs} , [complex] =10 ⁻³ mol dm ⁻³ , [NaIO ₄] =10 ⁻² mol dm ⁻³ , at different pH, (a)at 45 °C and (b) at 50 °C