STUDIES ON GRAFTED WATERMELON (CITRULLUS LANATUS) PRODUCTIVITY UNDER NORTH SINAI CONDITIONS

BY

MOHAMED REDA WEHEDY

B.Sc. Agric. Sc. (Plant Production), Alexandria University, 2013

A Thesis submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON GRAFTED WATERMELON (CITRULLUS LANATUS) PRODUCTIVITY UNDER NORTH SINAI CONDITIONS

BY

MOHAMED REDA WEHEDY

B.Sc. Agric. Sc. (Plant Production), Alexandria University, 2013

This thesis for M. Sc. degree has been approved by:
Dr. Shaban Desouky Abdelaziz Abou-Hussein
Researcher Prof. of Vegetable Crops, National Research Center
Dr. Mamdouh Mohamed Fawzy Abdallah
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University
Dr. Ahmed Abou El-Yazied Abdelhafez
Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University
Dr. Ibrahim El-Oksh
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Date of Examination: 9 / 8 / 2018

STUDIES ON GRAFTED WATERMELON (CITRULLUS LANATUS) PRODUCTIVITY UNDER NORTH SINAI CONDITIONS

BY

MOHAMED REDA WEHEDY

B.Sc. Agric. Sc. (Plant Production), Alexandria University, 2013

Under the supervision of:

Dr. Ibrahim Ibrahim El-Oksh

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ahmed Abou El-Yazied Abdelhafez

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Raef Hafez

Associate Researcher Prof. of Vegetable Crops, Plant Production Department, Desert Research Center

ABSTRACT

Mohamed Reda Wehedy. Studies on Grafted Watermelon (*Citrullus Lanatus*) Productivity under North Sinai Conditions. Unpublished M.Sc. Thesis. Horticulture Dept., Fac. Agric., Ain Shams Univ., 2018.

The influences of grafting treatments (6001 and Star rootstocks in addition to check nongrafted transplants) and some foliar spray treatments (potassium silicate at rates of 4 and 5 ml/L, calcium at rates of 1 and 2 ml/L, urea at rates of 1 and 2%, amino acids at a rate of 1.5 ml/L and check) on growth, yield and fruit quality of watermelon cv. Aswan F1 were investigated. The experiment was conducted in Baloza Research Station, Desert Research Center, at North Sinai Governorate during the two successive growing seasons of 2016 and 2017. The results indicated that plants sprayed with urea at a rate 2% or grafted onto Star rootstock recorded the highest significant values in vegetative characteristics (plant length, branch number, fresh and dry weights), yield and its components (fruit weight, size and diameter, flesh thickness and total yield), while the lowest values were observed in check nongrafted plants. Meanwhile, grafting had reducing effect on fruit quality, where the highest values of total soluble solids, total sugars and lycopene were found in the fruits of nongrafted plants. The application of 5 ml/L potassium silicate gave the best significant values of fruit quality parameters compared with check treatment during the two studied seasons.

Kay words: Watermelon, Grafting, Rootstock, Foliar spray, Potassium silicate, Calcium, Urea, Amino acids

ACKNOWLEDGEMENT

First and foremost, I would like to thanking ALLAH who gives me the power and help to finish this work.

I would like to express my deepest thanks and appreciation to **Prof. Dr. Ibrahim Ibrahim El-Oksh**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for supervision, continuous interest, valuable help and advice during the preparation of this thesis.

I am also thankful **Prof. Dr. Ahmed Abou El-Yazied Abdel hafez**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for supervision, continuous interest, kindsupport and for help in preparing and reviewing this thesis.

Many thanks to **Prof. Dr. Mohamed Raef Hafez**, Associate Researcher Professor of Vegetable Crops, Vegetable Unit, Plant Production Department, Desert Research Center, for suggesting the main idea, supervision, continuous help during carrying out this work and for he spared no effort in guiding me to bring this thesis to its best form.

Special thanks to all staff of Vegetable Unit, Plant Production Department, Desert Research Center, for their encouragement, constructive advice and continuous help during carrying out this work.

Finally, I would like to express my deepest thanks and appreciation to my family especially my father, my mother and my sisters, my friends and colleagues for their continuous help and encouragement during this study.

CONTENTS

	Page
LIST OF TABLES	III
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of grafting on watermelon plants	3
2.1.1. Vegetative growth	3
2.1.2. Flowering	10
2.1.3. Fruit yield	11
2.1.4. Fruit quality	16
2.2. Effect of foliar spray treatments on watermelon plants	20
2.2.1. Effect of potassium silicate	20
2.2.2. Effect of calcium	21
2.2.3. Effect of urea	22
2.2.4. Effect of amino acids	23
3. MATERIALS AND METHODS	25
3.1. The experiment layout	25
3.2. The experimental treatments	26
3.2.1. Grafting treatments.	26
3.2.2. Foliar spray treatments	29
3.3. Data Recorded	29
3.3.1. Vegetative growth	29
3.3.2. Yield and its components	30
3.3.3. Chemical analyzes	30
3.3.4. Statistical analysis	31
4. RESULTS AND DISCUSSION	32
4.1. Vegetative growth characteristics	32
4.1.1. Transplant stand percent	32
4.1.2. Plant length	32
4.1.3. Number of branches per plant	33
4.1.4. Fresh weight	36
4.1.5. Dry weight	36

4.2. Mineral composition of plants	40
4.2.1. Dry mater percentage	40
4.2.2. Nitrogen	42
4.2.3. Calcium	42
4.2.4. Potassium	44
4.2.5. Sodium	44
4.3. Yield and its components	47
4.3.1. Number of days to first flower	47
4.3.2. Fruit weight	47
4.3.3. Fruit size	49
4.3.4. Fruit diameter	51
4.3.5. Rind thickness	51
4.3.6. Flesh thickness	54
4.3.7. Yield	57
4.4. Chemical determinations	58
4.4.1. Total soluble solids	58
4.4.2. Total Sugars	61
4.4.3. Lycopene	63
5. SUMMERY AND CONCLUSION	68
6. REFERENCES	72
ARABIC SUMMERY	

LIST OF TABLES

Table	Page
Table 1. Chemical analysis of the experimental soil	25
Table 2. Chemical analysis of the As-Salam conduit water	26
Table 3. Meteorological data of monthly average temperature,	
relative humidity and wind speed of Balaoza in North	
Sinai	26
Table 4. Effect of grafting on stand percent of watermelon	
transplants in 2016 and 2017 seasons	32
Table 5. Effect of grafting and some foliar spray treatments on	
length (cm) of watermelon plants in 2016 and 2017	
seasons.	34
Table 6. Effect of grafting and some foliar spray treatments on	
number of branches per plant of watermelon plants in	
2016 and 2017 seasons	35
Table 7. Effect of grafting and some foliar spray treatments on	
fresh weight (g/ plant) of watermelon plants in 2016 and	
2017 seasons	37
Table 8. Effect of grafting and some foliar spray treatments on	
dry weight (g/plant) of watermelon plants in 2016 and	
2017 seasons	39
Table 9.Effect of grafting and some foliar spray treatments on	
dry mater percentage of watermelon plants in 2016 and	
2017 seasons	41
Table 10. Effect of grafting and some foliar spray treatments on	
nitrogen percent of watermelon plants in 2016 and 2017	
seasons	43
Table 11. Effect of grafting and some foliar spray treatments on	
calcium percent of watermelon plants in 2016 and 2017	
seasons.	45
Table 12. Effect of grafting and some foliar spray treatments on	
potassium percent of watermelon plants in 2016 and	
2017 seasons.	46

Γable 13.	. Effect of grafting and some foliar spray treatments on sodium percent of watermelon plants in 2016 and 2017
	seasons.
Table 14	. Effect of grafting and some foliar spray treatments on
	fruit weight (kg) of watermelon plants in 2016 and
	2017 seasons
Table 15	. Effect of grafting and some foliar spray treatments on
	fruit size (L) of watermelon plants in 2016 and 2017
	seasons.
Table 16	. Effect of grafting and some foliar spray treatments on
	fruit diameter (cm) of watermelon plants in 2016 and
	2017 seasons
Γable 17.	. Effect of grafting and some foliar spray treatments on
	rind thickness (cm) of watermelon fruits in 2016 and
	2017 seasons
Гable 18.	. Effect of grafting and some foliar spray treatments on
	flesh thickness (cm) of watermelon fruits in 2016 and
	2017 seasons.
Γable 19.	Effect of grafting and some foliar spray treatments on
	yield per plant (kg) of watermelon plants in 2016 and
T 11 20	2017 seasons.
Table 20.	Effect of grafting and some foliar spray treatments on
	total yield per faddan (ten/fad) of watermelon plants in
Table 21	2016 and 2017 seasons
Table 21	. Effect of grafting and some foliar spray treatments on total soluble solids (%) of watermelon fruits in 2016
	and 2017 seasons
Table 22	Effect of grafting and some foliar spray treatments on
1 aute 22.	total Sugars (%) of watermelon fruits in 2016 and 2017
	seasons
Table 23	. Effect of grafting and some foliar spray treatments on
14010 25.	lycopene content (mg/ 100 g) of watermelon fruits in
	2016 and 2017 seasons

INTRODUCTION

Watermelon (*Citrullus lanatus*) is considered as one of the most important vegetable crops in Egypt which occupies a great position either in the local consumption or export. The total area cultivated with watermelon was about 52,352 ha and the total production was about 1,68 million ton with an average yield of 32.1 ton/ha (**FAOSTAT, 2016**).

Under the desert conditions, watermelon plants are exposed to many environmental stresses and root disease, therefore there was an urgent necessity to find out effective solutions to overcome these stresses. Grafting may be one of these solutions and it is widely used in horticulture, whereby tissues of plants are joined so as to continue their growth together as a single plant (Hartmann et al., 2002).

Vegetable grafting is a very old technique that first appeared in Korea and Japan in 1920 by grafting watermelons onto bottle gourd rootstock (Lee, 1994) and then spread in many countries of the world as a technique for the proliferation of vegetable plants such as watermelon (Kroggel and Kubota, 2017), melon (Cucumis melo L.) (Mohammadi et al., 2014), squash (Oda, 2002), tomato (Bhatt et al., 2015), cucumber (Gao et al., 2015), eggplant (Gisbert et al., 2011) and pepper (Jang et al., 2012). Grafting achieves the following purposes: enhance plant growth, yield and fruit quality, reduce bacterial, fungal and viral infections in shoot and roots, control soil borne diseases, increase nutrient and mineral uptake, increase plant tolerance to stresses (Singh and Rao, 2014).

In addition, there are many materials that can be sprayed on watermelon plants to increase plant growth, yield and fruit quality under desert conditions such as potassium silicate, calcium, urea and amino acids.