

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communication Engineering Department

Advanced Central System For Multi-media Services

A Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in Electrical Engineering

(Electronics and Communication Engineering)

Submitted By

Eng. Kareem Ahmed Mostafa

Supervised By

Prof. Dr. Salwa Hussein El-Ramly Prof. Dr. Hesham Mohamed El-Badawy Dr. Reem Hamed Abdel-Hadi

> Cairo – Egypt 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communication Engineering Department

Examiners Committee

Name: Kareem Ahmed Mostafa

Thesis: Advanced Central System For Multi-media Services

Degree: Master of Science in Electrical Engineering

(Electronics and Communications Engineering)

Approved by:

Name and Title	Signature
1- Prof. Dr. Wagdy Rafaat Anis	
Professor in Electronics and Communication Dept., Faculty of Engineering, Ain Shams University	(Examiner)
2- Prof. Dr. Mohsen Mohamed Tantawy Network Planning Department, National Telecommunication Institute, Ministry of Communications & Information Technology	(Examiner)
3- Prof. Dr. Salwa Hussein El-Ramly Professor in Electronics and Communication Dept., Faculty of Engineering, Ain Shams University	(Supervisor)
4- Prof. Dr. Hesham Mohamed El Badawy Network Planning Department, National Telecommunication Institute, Ministry of Communications & Information Technology	(Supervisor)

Statement

This Thesis is submitted to Faculty of Engineering, Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Kareem Ahmed Mostafa

Signature:

Date: 28 / 8 / 2018

Acknowledgement

I would like to thank GOD for numerous gifts to me throughout the work in the Thesis. GOD has given me hope whenever I needed it. This work would have never seen the light without GOD's will.

I would like to thank my supervisor Professor Dr. **Salwa Hussein El-Ramly** for her guidance, suggestion and help during the development of this thesis. I feel proudly to have been inspired by her extraordinary encouragement, motivation, great intuition and hard work.

I would like also to express my heart full thanks to Professor Dr. **Hesham Mohammed El-Badawy** for his inspiration, valuable guidance and his great efforts in supervising the thesis. Throughout my research period, he provided me with lots of valuable ideas and many stimulating suggestions. Dr. **Hesham** gave me much of his valuable time whenever I asked and kept encouraging me to work harder. Really, I will never forget the research memories with Dr. **Hesham**.

Special thanks go to Dr. **Reem Hamed Abdel-Hadi** for her support and permanent willingness for discussions. Throughout my research period, she provided me with lots of fruitful ideas and many stimulating suggestions.

Finally, I would like to express my special thanks to my whole family for their unconditional support. All of my achievements have been due to their boundless love.

Abstract

Provisioning multimedia services via packet switched network is one of the most innovative trends in telecommunication world. IP Multimedia Subsystem (IMS) was a masterwork system that it can provide all services over an IP-based infrastructure. This thesis aims to illustrate a new model called IP Multimedia Mediator System (IMM) which is a unified communication system able to provide all communication and multimedia services. IMM uses the idea ofvirtualized cloud infrastructure enhance the to interoperability between different established systems as well as reduce the overall core network complexity. IMM testbed is evaluated as a central system for broadcasting multimedia services via several scenarios also, may be deployed in three types of network campus use cases.

This thesis reviews some of the steps of IMS's evolution series and explains all about its drawbacks in detail. This is in addition to a comparison with the new novel proposal IMM. IMS aspects were thoroughly investigated and its advantages and disadvantages are widely recognized. In spite of IMS is a complex architecture and not scalable enough, 4G and beyond that are not based on IMS core would be fraught with inefficiencies and would be suffering from performance degradation. For these reasons, it is vital to reduce complexity and cost of IMS.

As that, the new novel proposal provides a suitable solution to enhance the network operability with its full services in non-complex environment. As well as reducing the power consumption from the mobile base stations,

that led to reduce the carbon footprint that is emitted from them, which are considered one of the most important green communications' requirements.

In IMM smart community, the user does not need more than a device that has WLAN interface to direct communicate with IMM services station to have a complete package of existing services as well as any forthcoming smart services/applications.

IMM is a promising approach for resolving IMS problems. Also, IMM may be considered as one of the proposed prototypes for SDN/NFV deployment techniques.

Key Words: (IMS) IP Multimedia Subsystem, (3GPP) 3rd
Generation Partnership Project, (WLAN)
Wireless Local Area Network,
Cloudification, Virtualization, (NV) Network
Virtualization, (NFV) Network Functions
Virtualization, (SDN) Software-Defined
Networking, (IMM) IP Multimedia Mediator
System.

Thesis supervisors:

- Prof. Dr. Salwa Hussein ElRamly Ain Shams University, Cairo, EGYPT.
- Prof. Dr. Hesham Mohammed El-Badawy National Telecommunication Institute, Cairo, EGYPT.
- Dr. Reem Hamed Abdel-Hadi National Telecommunication Institute, Cairo, EGYPT.

Table of Contents

A (CKNC	OWLEDGEMENT	III
Αŀ	BSTR	ACT	IV
TA	BLE	OF CONTENTS	VI
LI	ST O	F FIGURES	VIII
LI	ST O	F TABLES	XII
LI	ST O	F SYMBOLS	XIII
LI	ST O	F ABBREVIATIONS	XIV
1			1
CI	HAPT	ER 1 INTRODUCTION	2
	1.1	TELECOM EVOLUTION AND DRAWBACKS	2
	1.2	RESEARCH AREA AND OUTCOMES	
	1.3	THESIS CONTRIBUTIONS	
	1.4	THESIS ORGANIZATION	
	1.5	EXTRACTED PAPER FROM THE THESIS	
2			8
	НАРТ	ER 2 IP MULTIMEDIA SUB-SYSTEM (IMS)	9
	2.1	Introduction	
	2.2	MULTIMEDIA CLASSIFICATION	
	2.	2.1 Text	11
	2.	2.2 Voice	12
	2.	2.2 Image and Video	15
	2.3	IMS LAYERS AND NETWORK ARCHITECTURE	17
	2.4	VIRTUALIZATION	23
	2.	4.1 Network Virtualization (NV)	
		4.2 Network Functions Virtualization (NFV)	
		4.3 Software Defined Networking (SDN)	
		CONCLUSION	
3			28
CI	HAPT	ER 3 IP MULTIMEDIA MEDIATOR-SYSTEM (IMM).	29
	2 1	INTRODUCTION	29
		1,11102 0 0 1101	
	3.2	IMS vs IMM	
	3.3	THE PROPOSED IMM TESTBED	
	3.4	IMM REQUIREMENTS	
	3.5	IMM PHYSICAL CREATION STEPS	
	3.6	IMM OPERATING SYSTEM MECHANISM	
	3.7	VIRTUAL MACHINES CREATION STEPS	
	3.8	IMM STATES	
	3.9	CONCLUSION	40

4		41
CHAPT	TER 4 IMM CONFIGURATION, TESTING, MONITOR	RING AND
MEASU	UREMENT	42
4.1	INTRODUCTION	42
4.2	FIRST VIRTUAL MACHINE CONFIGURATION STEPS	42
4.3	SECOND VIRTUAL MACHINE CONFIGURATION STEPS	50
4.4	TESTING SCENARIOS	55
4.5	IMM MONITORING PERFORMANCE TOOLS	
4.6	MEASURING IMM SYSTEM DEPLOYMENT	
4	.6.1 IMM Performance Metrics	62
4	.5.2 IMM Campus Network Use Cases	66
4.7		
5		72
CHAPT	TER 5 CONCLUSION AND FUTURE WORK	73
5.1	CONCLUSION	73
5.2	SUGGESTION FOR FUTURE WORK	
REFER	RENCES	75

List of Figures

Figure	page
Figure 2.1: Trends towards multimedia communication	10
Figure 2.2: Network oriented media classification sorts.	10
Figure 2.3: IMS Layers.	17
Figure 2.4: IMS Network Architecture.	22
Figure 2.5 CPU scheduling planning.	26
Figure 3.1: IMS v.s. IMM.	30
Figure 3.2: IMM testbed architecture.	32
Figure 3.3: IMM creation mechanism.	32
Figure 3.4: Fedora Workstation 22 iso-image.	33
Figure 3.5: Install Fedora Workstation 22 isoimage to Hard Drive.	33
Figure 3.6: Install Virtual Machine Manager into physical server.	34
Figure 3.7: ATCOM PSTN [AX-400P] Card.	35
Figure 3.8: ATCOM GSM [AXE4GN] Card.	36
Figure 3.9: Linux commands to monitor all network parameters.	37
Figure 3.10: All network interfaces after modifications	38

Figure 3.11: Virtual Machines Creation Steps.	39
Figure 3.12: IMM States.	40
Figure 4.1: Erasing old Mikrotik configurations.	42
Figure 4.2: Default Mikrotik configurations.	43
Figure 4.3: winbox loader program.	43
Figure 4.4: Default Mikrotik interfaces	44
Figure 4.5: Determination of both WAN/LAN interfaces.	44
Figure 4.6: Activation of WAN-interface via DHCP client interface.	44
Figure 4.7: WAN-interface automatically detected.	45
Figure 4.8: Erasing old WAN network address.	45
Figure 4.9: Both WAN/LAN network addresses.	45
Figure 4.10: Network route list.	46
Figure 4.11: Adapting DNS server.	46
Figure 4.12: Network ARP table.	47
Figure 4.13: adding Elastix-virtual-server address to ARP table.	47
Figure 4.14: Hotspot setup steps.	48
Figure 4.15: Hotspot server after creating.	49
Figure 4.16: Adding new hotspot user.	49

Figure 4.17: UE Detects IMM network and accesses it.	50
Figure 4.18: IMM-administrator Accesses Elastix server.	50
Figure 4.19: Elastix Dashboard.	51
Figure 4.20: Elastix Network Parameters.	51
Figure 4.21: List of certified hardware in EHCP.	52
Figure 4.22: Elastix-virtual-server detects the attached hardware to activate them.	52
Figure 4.23: Hardware detecting menu after activating AX400P and AXE4GN cards.	53
Figure 4.24: Adding new Elastix user.	53
Figure 4.25: Main sip extension information for each user.	54
Figure 4.26: IMM administrator applies the configuration to activate the user profile.	55
Figure 4.27: UE-1 and UE-2 makes IP-PBX call	56
Figure 4.28: UE accesses PDN via VM-1.	56
Figure 4.29: UE-1 calls UE-2 via PSTN access card.	57
Figure 4.30: UE-1 calls UE-3 via PLMN access card.	57
Figure 4.31: Zoiper network statistics.	59
Figure 4.32: Network Tools Application.	60

Figure 4.33: iptraf-ng interface statistics.	60
Figure 4.34: Using iptraf-ng to display packet distribution by size.	61
Figure 4.35: bmon detailed information per interfaces.	61
Figure 4.36: Linux commands for installing "istanbul" application.	62
Figure 4.37 (a): IMM Network Throughput (pedestrian-case).	63
Figure 4.37 (b): IMM Network Throughput (closed-case).	64
Figure 4.38 (a): IMM Packet Delivery Ratio (pedestrian-case).	65
Figure 4.38 (b): IMM Packet Delivery Ratio (closed-case).	65
Figure 4.39: The typical daily traffic load.	66
Figure 4.40: Use cases calculations' steps.	68
Figure 4.41: Small IMM Campus Network Use Case.	70

List of Tables

Table 2.1: Audio Compression Blueprints.	12
Table 2.2.: The most common, standardized encoding algorithms and their coding rate, speech quality, and applications.	13
Table 2.3: Format of a voice packet.	14
Table 2.4: Packetization size and rate for commonly used codecs.	14
Table 2.5: Image Compression Blueprints.	15
Table 2.6: Video Compression Schemes.	16
Table 4.1: IMM-Scenarios and their Objective.	55
Table 4.2: Use Cases Parameters.	70

List of Symbols

E% Traffic Intensity

m Number of available channels

N Numbers

 N_R Number of packets received at destination

 N_S Number of packets sent from destination

Ø Throughput

List of Abbreviations

1G First Generation

2G Second Generation

3G Third Generation

3GPP Third Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

AXE4GN ATCOM GSM Cards

BGCF Breakout Gateway Control Function

BH Busy Hour

BHCA Busy Hour Call Attempts

BHCR Busy Hour Calling Rate

CCR Call Completion Rate

CSCF Call Session Control Function

CPU Central Processing Unit

CLI Command Line Interface

CRC Cyclic Redundancy Check

CCITT Consultative Committee for International

Telephony Telegraphy

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

EHCP Elastix Hardware Certification Program