

UPGRADING OF LOW GRADE EAST SEBAEYA PHOSPHATE ORE

By

Eng. Mohamed Mohamed Eid Ahmed El-Esh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MINING ENGINEERING

UPGRADING OF LOW GRADE EAST SEBAEYA PHOSPHATE ORE

By

Eng. Mohamed Mohamed Eid Ahmed El-Esh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MINING ENGINEERING

Under the Supervision of

Prof. Dr. Salah El-Din Mohamed El-Mofty Prof. Dr. Mohamed Kamal Abdel-Rahman

Professor of Mineral Processing
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Cairo University

Professor of Mineral Processing Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Ayman Abdel-Hamid El-Midany

Professor of Mining and Mineral engineering Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

UPGRADING OF LOW GRADE EAST SEBAEYA PHOSPHATE ORE

By

Eng. Mohamed Mohamed Eid Ahmed El-Esh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MINING ENGINEEERING

Approved by the Examining Committee

Prof. Dr. Salah El-Din Mohamed El-MoftyThesis main advisor

Prof. Dr. Mohamed Kamal Abdel-Rahman Advisor

Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Ayman Abdel-Hamid El-Midany Advisor

Prof. Dr. Ahmed Abd-Elaziz AhmedInternal Examiner

Prof. Dr. Mohamed Abd-Eldaym Abdel-khalek External Examiner

Central Metallurgical R&D Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Mohamed Mohamed Eid Ahmed El-Esh

Date of Birth: 18 / 11 / 1986 **Nationality:** Egyptian

E-mail: eng.mohamedelesh@gmail.com **Phone:** 01003502524

Address: 32 Om Elqura street, Warraq, Giza

Registration Date: 1 / 10 / 2013 **Awarding Date:** / /2018

Degree: Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Salah El-Din Mohamed El-Mofty

Prof. Dr. Mohamed Kamal Abdel-Rahman Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Ayman Abdel-Hamid El- Midany

Examiners:

Prof. Dr. Salah El-Din Mohamed El-Mofty
Prof. Dr. Mohamed Kamal Abdel-Rahman
Central Metallurgical R&D Institute (CMRDI)
Prof. Dr. Ayman Abdel-Hamid El-Midany
Prof. Dr. Ahmed Abd-Elaziz Ahmed
Thesis main advisor
Advisor
Advisor
Internal Examiner

Prof. Dr. Mohamed Abd- Eldaym Abdel-khalek

Central Metallurgical R&D Institute (CMRDI)

Title of Thesis:

UPGRADING OF LOW GRADE EAST SEBAEYA PHOSPHATE ORE

External Examiner

Key Words:

Phosphate ore; Attrition; Flotation; Collectors; and depressant.

Summary:

About 90% of the phosphate produced is used in the manufacture of fertilizers. The run of-mine material is mostly of lower grade, needs upgrading. The aim of this work is to upgrade the low-grade East Sebaeya phosphate ore to achieve the desired product, which is utilized as a raw material for fertilizer. Attrition scrubbing was performed to clean the surface of ore from coated slimes and break the carbonates followed by flotation process to upgrade the phosphate concentrate. Statistical designs were used for both attrition scrubbing and flotation processes. The attrition of phosphate improves the phosphate grade and recovery up to 27.72% and 98.56%, respectively from a feed contains 21.6% P_2O_5 . The size (-0.4 +0.075) mm from attrition scrubbing was used as a feed for reverse flotation which improve P_2O_5 % grade to 29.77% at the optimum conditions. More attempts were tested to increase the grade more than 30% P_2O_5 . Several stages of attrioning up to 4 stages increase the grade to about 31 % P_2O_5 . Furthermore, four-stage attritioning followed by flotation produces a concentrate contains about 32 % P_2O_5 .

Acknowledgment

I would like to express my deep regards and sincere gratitude to Prof. Dr. Salah El-Din El-Mofty, Faculty of Engineering, Cairo University for his close supervision, and valuable stimulating guidance and fruitful discussion throughout this study.

My greatest thanks to Prof. Dr. Ayman A. El-Midany, Faculty of Engineering, Cairo University for his guidance and supervision. He has been very helpful in improving dissertation.

I cannot pay the suitable gratitude to my supervisor Prof. Dr. Mohamed Kamal Abdel-Rahman, Head of Mineral Processing Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for his guidance, patience and support.

Also, special thanks to the staff of Mineral Processing Laboratory, CMRDI.

Finally yet importantly, my special thanks to Misr Phosphate Company for their valuable cooperation during the experimental work.

Table of Contents

	Pages
Acknowledgement	I
Table of Contents	II-IV
List of Tables	V-VI
List of Figures	VII- VI
List of Abbreviations	IX
Abstract	X-XI
Chapter 1: Introduction	1-7
1.1. Background	1
1.2. Source of phosphate rocks	1
1.3. Characteristics of phosphate minerals	2
1.4. Phosphate production, consumption in the world	2
1.5. Phosphate reserve and resource in the world	3
1.6. Uses of phosphate rocks in industry	4
1.7. Classification of phosphate rocks	5
1.7.1. Siliceous phosphate ores	6
1.7.2. Calcareous phosphate ores1.7.3. Clayed phosphate ores	6 6
1.7.4. Phosphate ores associated with organic matter	6
1.7.5. Igneous and Metamorphic phosphate ores	6
1.8. Phosphate in Egypt	7
Chapter 2: Literature Review	8-17
2.1. Beneficiation techniques for upgrading phosphate ores	8
2.1.1. Physical methods	8
2.1.1.1. Size reduction and screening	8
2.1.1.2. Attrition scrubbing and classification	8
2.1.2. Electrostatic separation	8
2.1.3. Magnetic separation	9
2.1.4. Calcination Process	9
2.1.5. Flotation technique	10
2.2. Previous work2.3. Thesis objectives	10 17
Chapter 3: Experimental Work	18-34
3.1. Sample collection	18
3.2. Crushing of phosphate and crushing power consumption determination	18
3.2.1. Primary crushing	19
3.2.2. Secondary crushing	20
3.2.3. Determination of work index of East Sebaeya phosphate	20
3.2.4. Calculations of crushing power consumptions	21
3.3. Grinding	22

3.4. Sampling	24
3.5. Size analysis of the phosphate sample	24
3.6. Mineralogy analysis	25
3.6.1. Thin section of the phosphate sample	25
3.6.2. X-ray diffraction (XRD) of the sample	26
3.6.3. X-ray fluorescence (XRF) of the sample	26
3.6.4. Routine chemical analysis of the phosphate sample	27
3.7. Attrition scrubbing of the sample	27
3.7.1. Denver cell	28
3.7.1.1. Factorial experimental design	28
3.7.2. Attritor mill	29
3.7.3. Attrition scrubber	30
3.8. Flotation process	31
3.8.1. Flotation process for original ore	31
3.8.2. Flotation process for scrubbed product	31
3.8.2.1. Factorial experimental design	31
3.9. Improvement the P_2O_5 grade of phosphate product	33
3.9.1. Cleaning of flotation concentrate (double reverse flotation)	33
3.9.2. Study the attrition scrubbing in acidic media	33
3.9.2.1. Comparing between alkaline and acidic media in one stage attrition scrubbing	33
3.9.2.2. Study several stages of attrition scrubbing	34
3.9.3. Study stages of attrition scrubbing followed by flotation process	34
Chapter 4: Results and Discussion	35-73
4.1. Characteristic of the phosphate ore sample	35
4.1.1. XRD of the phosphate sample	35
4.1.2. XRF of the Phosphate sample	36
4.1.3. Mineralogy of the phosphate sample	36
4.2. Crushing of phosphate and crushing power consumption determination	38
4.2.1. First step crushing	38
4.2.2. Second crushing step for + 6.63 mm fraction	40
4.2.3. Third crushing step for + 6.63 mm fraction	42
4.2.4. Fourth crushing Step for + 6.63 mm fraction	43
4.2.5. Roll crushing for the size fraction $+$ 3.36 mm from all $-$ 6.63 mm	45
4.2.6. Determination of work index of East Sebaeya phosphate ore	48
4.2.7. Crushing power consumption for East Sebaeya phosphate ore	49
4.3. Size Analysis of phosphate sample	49
4.3.1. Size analysis of phosphate sample after crushing	49
4.3.2. Size analysis of phosphate sample after grinding	50
4.4. Beneficiation of East Sebaeya phosphate ore	52
4.4.1. Attrition scrubbing of phosphate sample	52
4.4.1.1. Denver cell	52
4.4.1.1.1. Results of statistical design	52
4.4.1.1.2. Analysis of the statistical design results	54
4.4.1.1.2.1. Effect of time and solid % by weight on	54
Phosphate grade and phosphate recovery	
at impeller speed 1200	
4.4.1.1.2.2. Effect of solid % by weight and	56

Appendix A: Results of statistical design for attrition process Appendix B: Results of statistical design for flotation process	80-83 84-87
References	75-79
Chapter 5: Conclusion	74
flotation process	
4.4.3.3. Study several stages of attrition scrubbing followed by	73
4.4.3.2.2. Study several stages of attrition scrubbing	72 73
one stage attrition scrubbing	5 0
4.4.3.2.1. Comparing between alkaline and acidic media in	71
4.4.3.2. Study the attrition scrubbing in acidic media	71
4.4.3.1. Cleaning flotation concentrate (double reverse flotation)	70
4.4.3. Improvement the P_2O_5 grade of the phosphate product	70
oleic acid as a collector	
and pH on phosphate grade and LOI at 1 kg/t	
4.4.2.2.3. The effect of phosphoric acid dose as a depressant	68
acid dose as a depressant	
on phosphate grade and LOI at 3.5 kg/t phosphoric	٠.
4.4.2.2.2. The effect of oleic acid dose as a collector and pH	67
phosphate grade and loss of ignition at pH 4.5	
Phosphoric acid dose as a depressant on	03
4.4.2.2.1. The effect of oleic acid dose as a collector and	65
4.4.2.1. Statistical design results 4.4.2.2. Analysis of statistical design results	65
4.4.2. Flotation process of the phosphate sample 4.4.2.1. Statistical design results	62 63
Valley sample)	<i>(</i> 2
4.4.1.3. Attrition scrubber (preparation of flotation feed of Nile	61
4.4.1.2. Attritor mill	59
phosphate recovery at 60% solids	
speed on phosphate grade and	
4.4.1.1.2.3. Effect of attrition time and impeller	68
min	
and phosphate recovery at time 10	
impeller speed on phosphate grade	

List of Tables

	Pages
Table 1.1: World production of phosphate rock	3
Table 1.2: World phosphate rock reserves	4
Table 2.1: Collectors used in phosphate ores flotation	12
Table 2.2: Depressants used in direct and reverse flotation of phosphate ores	13
Table 3.1: Parameters of work index	21
Table 3.2: Box Behnken Design for phosphate attrition	29
Table 3.3: Levels of factors studied on design	29
Table 3.4: Central Composite Design for phosphate flotation	32
Table 3.5: Levels of factors studied on design	32
Table 3.6: Conditions of phosphate attrition	33
Table 4.1: Different phases from (XRD) of Nile Valley phosphate sample	35
Table 4.2 : Chemical analysis (XRF) of Nile Valley phosphate sample	36
Table 4.3: Size distribution of the first crushing	39
Table 4.4: Size distribution of + 6.63 mm as a feed for second stage crushing	40
Table 4.5: Size distribution of the second crushing	40
Table 4.6: Size distribution of + 6.63 mm produced from the second stage jaw crushing	41
Table 4.7: Size distribution of third crushing	42
Table 4.8: Size distribution of + 6.63 mm produced from third stage jaw crushing	43
Table 4.9: Size distribution of - 6.63 mm fourth stage jaw crushing	43
Table 4.10: Particle size distribution of - 3.36 mm produced from sieving all - 6.63 mm	44
Table 4.11: Size distribution of + 3.36 mm produced from sieving all -6.63 mm	45
Table 4.12: Size distribution of roll crushing	45
Table 4.13: Material balance of crushing circuit of New Valley phosphate for power consumption determination	47
Table 4.14: Grindability of East Sebaeya phosphate	48
Table 4.15: Power consumption for crushing East Sebaeya phosphate	49
Table 4.16: Chemical analysis of each size fraction and cumulative wt.% passed to East Sebaeya phosphate after crushing	50
Table 4.17: Chemical analysis of each size fraction and cumulative wt.% passed to East Sebaeya phosphate after grinding	51
Table 4.18: Experimental design results and chemical analysis of the product (+36 micron) after Denver attrition	53
Table 4.19: Experimental design results and chemical analysis of the product	54

(-36 micron) after Denver attrition	
Table 4.20: Chemical analysis of the products after attrition by attritor mill at	60
60 % solids and time 10 min	
Table 4.21: Chemical analysis of the products after attrition by attrition scrubber at 60 % solids and time 10 min	61
Table 4.22: Experimental design and chemical analysis of sink fraction	64
Table 4.23: Experimental design and chemical analysis of float fraction	65
Table A.1: Results of ANOVA statistical design of attrition in term of $P_2O_5\ \%$	80
TableA.2: Results of ANOVA statistical design of attrition in term of P ₂ O ₅ %	82
Recovery	
TableB.1: Results of ANOVA statistical design of flotation in term of P ₂ O ₅ %	84
TableB.2: Results of ANOVA statistical design of flotation in term of	86
LOI%	

List of Figures

	Pages
Figure 1.1: Location of the major phosphate rock-producing areas of the world	2
Figure 1.2: Most of phosphate products starting by phosphate ore Figure 3.1: (a) Collecting samples for experimental work, and (b)	5 18
transporting samples from the site	
Figure 3.2: Primary jaw crusher	18
Figure 3.3: Secondary roller crusher	19
Figure 3.4: Standard Bond Ball mill Figure 3.5: Rod mill	21 22
Figure 3.6: Flow sheet of the studied sample	23
Figure 3.7: Sample splitter	24
Figure 3.8: "Wedag" shaker for size analysis	25
Figure 3.9: Nikon petrographic microscope	25
Figure 3.10: Brucker X-ray diffractometer	26
Figure 3.11: X-ray fluorescence spectroscopy	26
Figure 3.12: JASCO V-530 Spectrophotometer	27
Figure 3.13: "Denver" flotation machine (D -12) Figure 3.14: Union process attritor, model 1S	28 30
Figure 3.15: Denver attrition scrubber	30 30
Figure 3.16: Several stages of attrition scrubbing	34
Figure 4.1: XRD for Nile Valley phosphate sample	35
Figure 4.2: Photomicrograph of phosphorite from the Nile Valley shows the	37
constituents of this phosphorite including phosphatic grains (P),	
Calcite (Cl), Quartz (Q) and Anhydrite (A)	25
Figure 4.3: Photomicrograph of phosphorite from the Nile Valley shows	37
the phosphatic grain (P) are cemented mainly by calcite (CL).CN Figure 4.4: Photomicrograph of phosphorite from the Nile Valley shows the	38
occurrance of Anhydrite (A) around the phosphatic grain (P). CN	30
Figure 4.5: Size distribution of crushed phosphate first crushing step	39
Figure 4.6: Size distribution of second step crushing of + 6.63 mm produced from first crushing	41
Figure 4.7: Size distribution of third step crushing of + 6.63 mm produced	42
from second crushing Figure 4.8: Size distribution of fourth step crushing o $f + 6.63$ mm produced	44
from third stage crushing	
Figure 4.9: Size distribution of crushing o $f + 3.36$ mm produced from all 6.63 mm using roll crusher	46
Figure 4.10: Size distribution of phosphate sample for work index test	48
Figure 4.11: Relation between size distribution and P ₂ O ₅ % before & after Grinding	51
Figure 4.12: Size analysis of phosphate sample before & after grinding	52
Figure 4.13: Effect of time and solid % by weight on phosphate grade at impeller speed 1200 rpm	55
Figure 4.14: Effect of time and solid % by weight on phosphate recovery at impeller speed 1200 rpm	56

Figure 4.15: Effect of solid % by weight and impeller speed on phosphate	57
grade at time 10 min Figure 4.16: Effect of solid % by weight and impeller speed on phosphate	57
recovery at time 10 min	
Figure 4.17: Effect of attrition time and impeller speed on phosphate grade at	58
60 % solids	5 0
Figure 4.18: Effect of attrition time and impeller speed on phosphate recovery at 60% solids	59
Figure 4.19: The effect of mill speed on $P_2O_5\%$ at fraction (+75 μ m)	60
Figure 4.20: The effect of flotation with and without attrition on P ₂ O ₅ %	62
Figure 4.21: The effect of flotation with and without attrition on LOI %	63
Figure 4.22: The effect of oleic acid dose as a collector and phosphoric acid	66
dose as a depressant on P_2O_5 at pH 4.5	
Figure 4.23: The effect of oleic acid dose as a collector and phosphoric acid	66
dose as a depressant dose on LOI % at pH 4.5	
Figure 4.24: The effect of oleic acid dose as a collector and pH on P ₂ O ₅ % at	67
3.5 kg/t phosphoric acid as a depressant	٠.
Figure 4.25: The effect of oleic acid dose as a collector and pH on LOI %	68
At 3.5 kg/t phosphoric acid as a depressant	
Figure 4.26: The effect of phosphoric acid dose as a depressant and pH on	69
P_2O_5 % at 1kg/t oleic acid as a collector	0,
Figure 4.27: The effect of phosphoric acid dose as a depressant and pH on	69
LOI % at 1kg/t oleic acid as a collector	0,2
Figure 4.28: The effect of phosphate cleaning on P ₂ O ₅ %	70
Figure 4.29: The effect of phosphate cleaning on LOI %	70
Figure 4.30: The effect of attrition in acidic media on P ₂ O ₅ %	71
Figure 4.31: The effect of attrition in acidic media on LOI %	71
Figure 4.32: The effect of several stages of attrition scrubbing on P ₂ O ₅ %	72
Figure 4.33: The effect of several stages of attrition scrubbing on LOI%	72
Figure 4.34: The effect of flotation process after several stages of attrition	73
scrubbing on P ₂ O ₅ %	
Figure 4.35: The effect of flotation process after several stages of attrition	73
scrubbing on LOI %	, .
Figure A.1: Normal probability plot of the studentized residuals	81
Figure A.2: Model predicted value of P_2O_5 % vs the actual experimental	81
Values	01
Figure A.3: Normal probability plot of the studentized residuals	83
Figure A.4: Model predicted value of P ₂ O ₅ % recovery vs the actual	83
experimental values	00
Figure B.1: Normal probability plot of the studentized residuals	85
Figure B.2: Model predicted value of P_2O_5 % vs the actual experimental	85
Values	30
Figure B.3: Normal probability plot of the studentized residuals	87
Figure B.4: Model predicted value of LOI % vs the actual experimental	87
Values	5.

List of Abbreviations

IR	Insoluble residual
LOI	Loss of ignition
ROM	Run of mine
Rpm	Revolution per minute
wt.	Weight

Abstract

Phosphate rock is the main source of phosphorous, which is essential in many industrial applications. About 90% of the phosphate produced in the world is used in the manufacture of fertilizers. The marketable phosphate is usually 30% P_2O_5 or higher. The run-of-mine material is mostly of low grade, which needs processing, or upgrading.

In this thesis run of mine phosphate sample was collected from East Sebaeya. Crushing of phosphate sample was carried out using primary and secondary crushing in closed circuit with sieve 6.63 mm and 3.36 mm in order to prepare size less than 3.36 mm. The work index was calculated (16.38 KWh/t) as a primary step to calculate crushing power consumption. The total power consumption for crushing 100 ton phosphate to pass 100 % from size less than 3.36 mm was 188.74 KW.

Sample was selected and prepared for mineralogical characterization. At the same time, another representative sample was finely ground to less than (74 μ m) for XRD and XRF analyses. XRD analysis showed that phosphate ore sample are composed of main mineral apatite in the form of collophane with anhydrite, calcite and quartz. While XRF revealed that it contains 21.66 % P_2O_5 and 13.1 % LOI. The petrographical investigations showed that, phosphate samples are composed of phosphatic grains with angular to subangular detrital quartz grains cemented by calcite and anhydrite. Then the following was performed:

1- Attrition scrubbing: to clean the surface of ore from coated slimes and break the carbonates . Three devices (Denver cell, attiritor mill, and attrition scrubber) were used for attrition scrubbing test.

15 experiments were performed on Denver cell by using Design Expert-6 -0-5.in Denver cell. The various combinations of studied variables performed on the attrition experiments were the solid % by weight, attrition time and impeller speed. The experimental results were fitted to a statistical model, which enables the prediction of the output responses (P_2O_5 %, Loss of ignition, insoluble residual, and phosphate recovery). It was found that the best result from Denver cell was 27.72% from 21.66 for P_2O_5 and 98.56 % for P_2O_5 recovery at 60 % solids, time of attrition 10 min and impeller speed 1200 rpm.

It was observed that the result from Denver cell ($P_2O_5 = 27.72$ %) is relatively better than the results from attritor mill ($P_2O_5 = 27.1$ %), and this is due to the different in design of each device

2- Reverse flotation process: Two samples were conducted to flotation process, the first for original ore and the second for scrubbed product. The flotation process for scrubbed product is more effective than flotation process for original sample (without attrition). The P₂O₅ grades increased by 6.2 % and LOI decreased by 5.6 %, respectively when phosphate sample exposed to attrition scrubbing before flotation process. This means that attrition process cleans phosphate ore surface from slimes and decreases the size which increases the flotation efficiency.

Therefore, 13 revers flotation experiments for scrubbed samples were performed using design expert-6 -0-5 program. The effective parameters such as dose of

collector (oleic acid), doss of depressant (phosphoric acid) and pH were studied. It is observed that higher P_2O_5 % grade of phosphate product is obtained at pH 4.5, 1kg/t oleic acid and 3.5 kg/t phosphoric acid. At these conditions, P_2O_5 %, and LOI %, are 29.77 %, and 7.52 %, respectively.

3- Some experiments were carried out on phosphate samples to increase P_2O_5 grade $\geq 30\%$:

- A concentrate product from flotation process was subjected to another reverse flotation process (pH 5.5, 2 kg /t oleic acid and 3.5 kg/t phosphoric acid), that leads to upgrade the P_2O_5 to 30.33 % and reduce the LOI to 7.5 %.
- P₂O₅ was increased to 31.06 % and LOI was reduced to 6.13 % after fourth stages of attrition scrubbing in acidic media.
- Finally, the highest P₂O₅ (31.69 %) and the lowest LOI (6.02 %) were obtained when the product of fourth attrition stage conducted to reverse flotation process (pH 5.5, 2 kg/t oleic acid and 3.5 kg/t phosphoric acid).

It is concluded that, the attrition and flotation of low-grade East Sebaeya phosphate ore produced a high-grade phosphate product (31.69 % P₂O₅) suitable for fertilizers and other phosphate compounds. The economics of each process need to be assessed to help in developing the best flow sheet for this type of phosphate ores.