

# Faculty of Engineering Electrical Power and Machines Department

# Enhancing the distribution system performance by network reconfiguration and dispersed generation allocation

M.Sc. Thesis
By

### Mina Gamal Naguib Nassim

Submitted in partial fulfillment of the requirements for the M.Sc. degree in

Electrical Engineering (Electrical Power and Machines Department)

Supervised by:

Prof Dr. Hossam E.A. Talaat
Dr. Walid Atef Omran

Cairo, 2018

## Examiners' Committee

Name : Mina Gamal Naguib Nassim

**Thesis title** : Enhancing the distribution system performance by network

reconfiguration and dispersed generation allocation

<u>Degree</u>: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering

#### Name, title and affiliation

**Signature** 

### **Prof. Dr. Metwally EL-Sharkawy**

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### Prof. Dr. Essam Aboul Zahab

Electrical Power and Machines Department, Faculty of Engineering, Cairo University

#### Prof. Dr. Hossam E.A Talaat

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

### **SUPERVISORS' COMMITTEE**

Name : Mina Gamal Naguib Nassim

<u>Thesis title</u>: Enhancing the distribution system performance by network

reconfiguration and dispersed generation allocation

**<u>Degree</u>** : Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering

#### Name, title and affiliation

**Signature** 

#### Prof. Dr. Hossam E.A Talaat

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### Dr. Walid Atef Omran

Electrical Power and Machines Department,

Faculty of Engineering, Ain Shams University

## **STATEMENT**

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of Master of Science degree in Electrical Engineering.

The work in this thesis has been carried out by the author at the Department of Electrical Power and Machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Nama: Mina Camal Maguih Magaim

| Name. Mina Gamai Naguio N | assiiii |   |        |
|---------------------------|---------|---|--------|
| Signature:                |         |   |        |
|                           | Date:   | / | / 2018 |

### **Researcher Data**

Name : Mina Gamal Naguib Nassim

Place of birth : Cairo – Egypt

Last academic

degree

: Bachelor of Electrical Engineering

Field of

specialization

: Electrical Power and Machines

University issued

the degree

: Ain Shams University

Date of issued

degree

: June-2013

Job : Teaching Assistant – Electrical Power and

Machines Department-Faculty of Engineering-Ain shams university

### **Abstract**

The emergence of dispersed generation, smart grids and deregulated electricity markets has increased the focus on enhancing the performance of distribution systems. To achieve this objective, different aspects that can be considered in the planning and operation of distribution systems; including energy loss minimization, enhancing the voltage profile, and improving the system reliability.

Despite their advantages, renewable based Dispersed Generators (DGs) can pose some challenges in the planning and operation of the distribution system due to the intermittency in their output power. Accordingly, the actual output profile of these DGs should be considered to obtain realistic results.

The work in thesis proposes a method that can be used to enhance the performance of the distribution system by performing simultaneous Distribution System Reconfiguration (DSR) and DGs allocation. In addition, the intermittent nature of the renewable based DGs and the load profile are considered while performing the proposed method using a probabilistic model. The proposed method aims to present different annual plans for the optimal system configuration and DGs sizes and locations in order to achieve three objectives. The first objective focuses on performing simultaneous DSR and DGs allocation to minimize the annual energy loss of the distribution system under study. The second objective discusses the application of the proposed method to improve the distribution system reliability. Finally, in the third objective, the proposed method is used to minimize the combined cost of annual energy loss and annual energy not served which is related to the system reliability. The proposed method is implemented using Firefly Algorithm (FA) which is one of the modern Meta-Heuristic optimization techniques.

In this work, the solar irradiance and wind speed data are obtained from the National Renewable Energy Laboratory. In addition, the IEEE 33-bus distribution system is used, and FA is implemented in the MATLAB environment. In addition, Newton Raphson

power flow is used to check the constraints related to the voltages and currents ampacities.

**Keywords:** distribution system, dispersed generators, distribution system reconfiguration, optimal power flow, firefly algorithm.

### **Acknowledgement**

First and foremost, I would like to thank God whose guidance lead me this far and for the knowledge he has blessed me with.

I would like to thank my supervisor **Prof Dr. Hossam E.A Talaat**, for his guidance, support, encouragement throughout my research study. He has made major influence in my academic life.

I would like to express my sincere gratitude to my supervisor **Dr. Walid Atef Omran** for his continuous guidance, and constructive suggestions during the research. I could not possibly list all that I have learned from him throughout the research period.

Finally, I am grateful for my parents, who helped me through all these. Special thanks to my wife who stood by me throughout the hard and good times.

# **Table of Contents**

| Abst  | ract          |                                                                 | 1   |
|-------|---------------|-----------------------------------------------------------------|-----|
| Ackr  | nowledgeme    | ent                                                             | iii |
| Table | e of Conten   | ts                                                              | iv  |
| List  | of Figures    |                                                                 | vii |
| List  | of Tables     |                                                                 | ix  |
| List  | of Abbrevia   | tions                                                           | X   |
| List  | of Symbols    |                                                                 | xi  |
| Chap  | oter 1 Introd | uction                                                          | 1   |
|       | 1.1           | General                                                         | 1   |
|       | 1.2           | Power system structure                                          | 1   |
|       | 1.3           | Distribution system planning and operation aspects              | 2   |
|       | 1.4           | Research objectives                                             | 2   |
|       | 1.5           | Thesis organization                                             | 2   |
| Chap  | oter 2 Perfor | mance Enhancement of Distribution Systems                       | 4   |
| 2     | 2.1           | General                                                         | 4   |
| 2     | 2.2           | Distribution system performance enhancement methods             | 4   |
|       | 2.2.1         | Distribution system reconfiguration                             | 4   |
|       | 2.2.2         | Optimal DGs allocation                                          | 5   |
|       | 2.2.3         | Simultaneous distribution system reconfiguration and allocation |     |
| 2     | 2.3           | The adopted strategy                                            | 6   |
| 2     | 2.4           | Summary                                                         | 7   |
| Chap  | oter 3 Model  | lling Methodology                                               | 8   |
| 3     | 3.1           | General                                                         | 8   |
| 3     | 3.2           | Photovoltaic systems modelling                                  | 8   |
| 3     | 3.3           | Wind turbines modelling                                         | 10  |
| 3     | 3.4           | Load modelling                                                  | 13  |
| 3     | 3.5           | Summary                                                         | 15  |
| Chap  | oter 4 Energ  | y loss Reduction                                                | 16  |
| 4     | 4.1           | General                                                         | 16  |
| 4     | 4.2           | Problem formulation                                             | 16  |

|    | 4.2.1          | Objective function                                               | 16   |
|----|----------------|------------------------------------------------------------------|------|
|    | 4.2.2          | Problem constraints                                              | 17   |
|    | 4.3            | Firefly Optimization Algorithm                                   | 18   |
|    | 4.4            | Application of the firefly algorithm                             | 20   |
|    | 4.5            | Case Studies                                                     | 22   |
|    | 4.5.1          | Case1 (Peak conditions)                                          | 23   |
|    | 4.5.2          | Case 2                                                           | 26   |
|    | 4.5.3          | Case 3                                                           | 29   |
|    | 4.6            | Summary                                                          | 36   |
| Ch | apter 5 Relia  | bility Improvement of The Distribution System                    | 37   |
|    | 5.1            | General                                                          | 37   |
|    | 5.2            | Distribution system reliability                                  | 37   |
|    | 5.3            | Distribution system reliability indices                          | 38   |
|    | 5.3.1          | System average interruption frequency index (SAIFI)              | 38   |
|    | 5.3.2          | System average interruption duration index (SAIDI)               | 38   |
|    | 5.3.3          | Energy not served index (ENS)                                    | 39   |
|    | 5.4            | Modified reliability indices                                     | 39   |
|    | 5.4.1          | Modified system average interruption frequency index (MSAIFI     | ) 40 |
|    | 5.4.2          | Modified system average interruption duration index (MSAIDI).    | 40   |
|    | 5.4.3          | Modified energy not served index (MENS)                          | 41   |
|    | 5.5            | Problem formulation                                              | 41   |
|    | 5.5.1          | Objective function                                               | 41   |
|    | 5.5.2          | Problem constraints                                              | 42   |
|    | 5.6            | Application of Firefly Algorithm on the objective function       | 43   |
|    | 5.7            | Simulation results                                               | 45   |
|    | 5.7.1          | Best values for the modified reliability indices based on season | 46   |
|    | 5.7.2          | Annual plans for reliability enhancement                         | 49   |
|    | 5.8            | Summary                                                          | 55   |
| Ch | apter 6 Distri | bution System Cost Reduction                                     | 56   |
|    | 6.1            | General                                                          | 56   |
|    | 6.2            | Introduction                                                     | 56   |
|    | 6.3            | Problem formulation                                              | 56   |
|    | 6.3.1          | Objective function                                               | 56   |

| 6.3.2             | Problem constraints                                                       |
|-------------------|---------------------------------------------------------------------------|
| 6.4               | Application of firefly on the objective function59                        |
| 6.5               | Simulation results6                                                       |
| 6.5.1             | Different annual plans for the combined cost minimization6                |
| 6.5.2             | The effect of the objective function on the overall system performance    |
| 6.6               | Summary6                                                                  |
| Chapter 7 Conc    | lusions and Future Work6                                                  |
| 7.1               | Conclusions                                                               |
| 7.2               | Recommendations for future work                                           |
| Appendix A So     | lar irradiance data for the four seasons during the whole studied period  |
| Appendix B Pr     | obability matrices of the solar irradiance for the four seasons7          |
| Appendix C Wi     | nd speed data for the different seasons during the whole study period     |
| Appendix D Wi     | nd speed probability matrices for the four seasons                        |
| Appendix E IEI    | EE 33-Bus system data8                                                    |
| Appendix F Exa    | mple illustrates the method that used to calculate the reliability indice |
| Appendix G Th     | e failure rates of the system under study8                                |
| List of Reference | es8                                                                       |

## **List of Figures**

| Figure 1-1 Centralized power system [1]                               | 1                |
|-----------------------------------------------------------------------|------------------|
| Figure 3-1 Solar irradiance for winter                                | 10               |
| Figure 3-2 Wind speed during winter season                            | 11               |
| Figure 3-3 Wind turbine output power curve [28]                       | 13               |
| Figure 3-4 Per unit load data [25]                                    | 13               |
| Figure 4-1 Pseudo code of the FA                                      | 19               |
| Figure 4-2 Flow Chart for the application of the FA                   | 21               |
| Figure 4-3 IEEE 33-bus system                                         | 23               |
| Figure 4-4 Convergence of FA for Scenario V of Case 2                 | 26               |
| Figure 4-5 System configuration and DGs sizes/locations for winter    | in plan III32    |
| Figure 4-6 System configuration and DGs sizes/locations for spring    | in plan III33    |
| Figure 4-7 System configuration and DGs sizes/locations for summe     | r in plan III 34 |
| Figure 4-8 System configuration and DGs sizes/locations for fall in p | olan III35       |
| Figure 5-1 The application of FA for reliability enhancement          | 44               |
| Figure 5-2 Modified system average interruption frequency index im    | provement.46     |
| Figure 5-3 Modified system average interruption duration index imp    | rovement46       |
| Figure 5-4 Modified energy not served improvement                     | 47               |
| Figure 5-5 MSAIFI for the different annual plans                      | 53               |
| Figure 5-6 MSAIDI for the different annual plans                      | 53               |
| Figure 5-7 MENS for the different annual plans                        | 54               |
| Figure 6-1 The application of the proposed method on the cost minir   | nization60       |
| Figure 6-2 Typical cost function of energy not served [12]            | 61               |
| Figure 6-3 % improvements of the annual energy loss and annual energy | ergy not served  |
|                                                                       | 66               |
| Figure A-1 Solar irradiance during winter                             | 70               |
| Figure A-2 Solar irradiance during spring                             | 70               |
| Figure A-3 Solar irradiance during summer                             | 71               |
| Figure A-3 Solar irradiance during fall                               | 72               |

| Figure C-1 Wind speed during winter   | .76 |
|---------------------------------------|-----|
| Figure C-2 Wind speed during spring   | .76 |
| Figure C-3 Wind speed during summer   | .77 |
| Figure C-4 Wind speed during fall     | .77 |
| Figure F-1 Simple distribution system | .85 |