GEO-ENVIRONMENTAL STUDY OF THE AREA BETWEEN INCHAS AND ABU ZAABL, EAST CAIRO, EGYPT

Submitted By Nasser Mohamed Afify El Sayed

B.Sc. of Science (Geology), Faculty of Science, Cairo University, 1982 Master in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET

GEO-ENVIRONMENTAL STUDY OF THE AREA BETWEEN INCHAS AND ABU ZAABL, EAST CAIRO, EGYPT

Submitted By Nasser Mohamed Afify El Sayed

B.Sc. of Science (Geology), Faculty of Science, Cairo University, 1982 Master in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment

Эf

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This Thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Ibrahim Zakaria Mahmoud El Shamy

Prof. of Hydrogeology Faculty of Science Helwan University

2-Prof. Dr. Mohamed Hamed Abd El Aal

Prof. of Geophysics Faculty of Education Ain Shams University

3-Prof. Dr. Mohamed Gharib El Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences - Institute of Environmental Studies & Research Ain Shams University

4-Dr. Hassan Kamel Fathy Garamoon

Assistant Prof. of Hydrogeology Faculty of Science Ain Shams University

GEO-ENVIRONMENTAL STUDY OF THE AREA BETWEEN INCHAS AND ABU ZAABL, EAST CAIRO, EGYPT

Submitted By Nasser Mohamed Afify El Saved

B.Sc. of Science (Geology), Faculty of Science, Cairo University, 1982 Master in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed Hamed Abd El Aal

Prof. of Geophysics Faculty of Education Ain Shams University

2-Dr. Hassan Kamel Fathy Garamoon

Assistant Prof. of Hydrogeology Faculty of Science Ain Shams University

3-Dr. Ahmed Gad Abd El Wahed

Lecturer of Geology Faculty of Science Ain Shams University

2018

AKNOWLEDGEMENT

First, thanks to Allah, to whom I relate any success in my all life. I wish to express my sincere gratitude to Prof. Dr. Mohamed Hamed Abd El Aal, Professor of Geophysics, Faculty of Education, Ain Shams University, for his eminent supervision, valuable advice and constant support which made the completion of this work possible.

I would like to express my grateful acknowledgement to Dr. Hassan Kamel Fathy Garamoon, Assistant Prof. of Hydrogeology, Faculty of Science, Ain Shams University for his sincere supervision and continuous guidance, support and encouragement. I would like to express my deep thanks and great appreciations to Dr. Ahmed Gad Abd El Wahed, Lecturer of Geology, Faculty of Science, Ain Shams University, for his generous guidance, continuous encouragement, and supervision.

I would like to express my deep gratitude to Mr. Mohammed El Shazly Farag, Expert of Groundwater Resources and Well Drilling Supervision, for his great help and continuous support throughout this work. I would like to thank Mr. Amr Mohsen for his great help in drawing diagrams of this work.

I would like to express my deep appreciation to my wife, my daughters Yasmeen and Yara, my son Mohamed and to all my family for their continuous support and encouragement.

ABSTRACT

The study area lies around Ismailia Canal which is one of the most important branches of the Nile River in Egypt. It is the main source of drinking and irrigation water for many cities. This canal was constructed in 1862 to supply drinking water to the villages on the Suez Canal zones and to the workers during digging the Suez Canal Navigation Route.

Twenty three groundwater samples were collected from the area east and west of Ismailia Canal. The collected samples represent regions of Mashtool El Souq, Abu Zaabal, Shebeen El Qanater, Al Monier, Salamant, Inchas, Inchas El Raml, Belbees and Al Obour.

Fifteen surface water samples were collected from Ismailia Canal along Cairo - Ismailia agricultural road, in addition to, Abu Zaabal lake which characterized by high salinity. Each surface water sample was labeled and identified according to its location. TDS, EC and pH were measured in the field.

Twenty one soil samples were studied from the cultivated and reclaimed lands east and west of Ismailia Canal. The soil samples were selected close to the sites of water samples, whether it is groundwater or surface water and labeled accordingly. The samples were collected from five different points and mixed together to represent the location of sampling.

The objective of the study is to discuss the chemical and physicochemical characteristics of groundwater and surface water of the study area. The chemical and physicochemical characteristics comprise the abundance and distribution of major ions, heavy metals, Hydrogen Ion Concentration (pH), Total Dissolved Salts (TDS), Total Hardness (TH) and Electrical Conductivity (EC).

Spatial distribution maps of chemical constituents and heavy metals of groundwater in the study area were provided by using Arc GIS technique Ver. 10.1 to explain the areal distribution of these constituents.

The study showed that many concentrations of heavy metals in groundwater, surface water and soil exceed the proportions allowed by international standards, whether in drinking, irrigation or household uses.

TABLE OF CONTENTS

Content		Page	
ACKNOV	VLEDEMENT	I	
ABSTRACT		П	
TABLE OF CONTENTS		IV	
LIST OF	FIGURES	VIII	
LIST OF	TABLES	XII	
LIST OF	PHOTOS	XIV	
LIST OF	ABBREVIATIONS	XV	
CHAPTER 1: INTRODUCTION		1	
1.1	Background	1	
1.2	Location and accessibility	4	
1.3	Climate	5	
1.4	Aims and Objectives	17	
1.5	Structure of the thesis	18	
CHAPTER 2: LITERATURE REVIEW		20	
СНАР	CHAPTER 3: GEOLOGY AND HYDROGEOLOGY 30		
3.1	Geology	30	
3.2	Hydrogeology	37	
CHAI	PTER 4: MATERIALS AND METHODS	54	
4.1	Sampling Techniques	54	
4.1.1	Designing a Sampling Plan	55	
4.1.2	Sampling Criteria	55	
4.1.3	Sampling frequency	55	

4.1.4	Groundwater Sampling Equipment	56
4.1.5	Suitability of sampling equipment	56
4.1.6	Sampling Containers	56
4.1.7	Sample Identification, Transport and Storage	56
4.2	Field Sampling	57
4.2.1	Groundwater Samples	58
4.2.2	Surface water samples	60
4.2.3	Soil Sampling	62
4.3.1	Geochemical Analysis	64
4.3.1.1	pH measuring	64
4.3.1.2	Measuring of Electrical Conductivity (EC)	65
4.3.1.3	Measuring of Total Dissolved Solids (TDS)	65
4.3.1.4	Major Cations and Anions Analysis	66
4.3.1.5	Heavy Metals Analyses	67
4.3.2	Soil Analysis	67
4.4	Statistical Treatment of data	69
CHAPTER 5: HYDROGEOCHEMISTRY OF GROUNDWATER AND SURFACE WATER		
5.1	Hydrogeochemistry of Groundwater	70
5.1.1	Physicochemical parameters of groundwater	71
5.1.2	Chemical Composition of groundwater	77
5.1.2.1	Major Cations	77
5.1.2.2	Major Anions	83
5.1.2.3	Toxic or heavy Metals	87
5.1.2.4	Comparison of heavy metals with different parts of the Nile Delta	98

5105			
5.1.2.5	Potential Sources of Pollution with Heavy Metals	99	
5.1.2.6	Statistical analysis	100	
5.2	Geochemical classification of groundwater	101	
5.2.1	Schoeller's (1955) Geochemical Classification	101	
5.2.2	Durov's Geochemical Classification	103	
5.2.3	Piper's Geochemical Classification	104	
5.3	Hydrogeochemistry of Surface Water	106	
5.3.1	Physicochemical Parameters	106	
5.3.2	Chemical Composition	107	
5.3.2.1	Major Cations	107	
5.3.2.2	Major Anions	109	
5.3.2.3	Heavy Metals	111	
5.3.3	Geochemistry of surface water	111	
CHAPTER 6: GEOCHEMISTRY OF SOILS		114	
6.1	Physicochemical Properties	114	
6.2	Metal Distribution	116	
6.3	Heavy metals interaction and sources	124	
	CHAPTER 7: GEOENVIRONMENTAL ASSESSMENT OF WATER AND SOILS		
7.1	Assessment of Water Quality	127	
7.1.1	Water quality for irrigation	128	
7.1.1.1	Electrical Conductivity (EC)	132	
7.1.1.2	Total Dissolved Solids (TDS)	133	
7.1.1.3	Soluble Sodium Percentages (SSP)	134	
7.1.1.4	Sodium Adsorption Ratio (SAR)	135	
7.1.1.5	Residual Sodium Carbonate (RSC)	136	

5.1.1.6	Magnesium Adsorption Ratio (MAR)	137
7.1.1.7	Chloride Content (Cl ⁻)	138
7.1.1.8	Toxic Metals Content	140
7.1.2	Water quality for domestic purposes	141
7.1.2.1	Total dissolved solids (TDS)	142
7.1.2.2	Total Hardness (TH)	143
7.1.2.3	Corrosively Ratio (CR)	144
7.1.3	Water quality for drinking based on heavy metals	145
7.2	Assessment of Soils Quality	147
7.3.1	Soil contamination by toxic metals	148
СНАР	TER 8: SUMMARY AND CONCLUSION	149
REFERENCES		158
المستخلص		١
ملخص الرسالة باللغة العربية		٣
		_

LIST OF FIGUERS

Figure		Page
Figure (1.1)	Location map of the Study Area	6
Figure (1.2)	Digital elevation model of the Eastern Nile Delta region, Egypt (after Ezzeldin et al., 2016)	7
Figure (1.3)	Land-use map produced by the supervised classification of Landsat image 2015 (after Ezzeldin, 2016)	8
Figure (1.4)	Relative humidity (%) at Inchas and Belbees	10
Figure (1.5)	Mean of day temperature at Inchas and Belbees	10
Figure (1.6)	Total Monthly Rainfall at Inchas and Belbees	11
Figure (1.7)	Maximum rainfall per day at Inchas and Belbees	11
Figure (1.8)	Evaporation per day at Inchas and Belbees	12
Figure (1.9)	Average temperature and precipitation at Abu Zaabal during the last 30 years (meteoblue.com, 2016)	14
Figure (1.10)	Cloudy, sunny, and precipitation days of Abu Zaabal (meteoblue.com, 2016)	15
Figure (1.11)	Maximum temperatures of Abu Zaabal (meteoblue.com, 2016)	15
Figure (1.12)	Average temperatures and precipitation of Inchas area (meteoblue.com, 2016)	15
Figure (1.13)	Cloudy, sunny, and precipitation days of Inchas area (meteoblue.com, 2016)	16
Figure (1.14)	Maximum temperatures of Inchas area (meteoblue.com, 2016)	16
Figure (3.1)	Isopach map of the Quaternary aquifer in the eastern Nile Delta region (after Geriesh, 1994)	31
Figure (3.2)	Nile Delta Structural Zone (Shata and El Fayoumy, 1966)	32
Figure (3.3)	Nile Delta Physiography (Shata and El Fayoumy, 1966)	33
Figure (3.4)	Desert Wadies in Nile Delta Vicinity (Shata and El Fayoumy, 1966)	34
Figure (3.5)	Geological Cross Section at Cairo (Shata and El Fayoumy, 1966)	34

Figure (3.6)	Geologic map of the study area (after RIGW, 1989)	36
Figure (3.7)	Configuration of aquifer systems in the Nile Delta region (after Sakr, 2005)	39
Figure (3.8)	Depth to groundwater of the Nile Delta region in 2008 (Morsy, 2009)	41
Figure (3.9)	Piezometric head of the Nile Delta region in 2008 (Morsy, 2009)	42
Figure (3.10)	Hydrogeological Map of East Cairo (modified after RIGW, 1992)	44
Figure (3.11)	Isothickness Map of the Holocene Aquitard (After RIGW, 1989)	45
Figure (3.12)	The difference of groundwater contour map from year 2000 to 2030 (The first Scenario) (After El-Fakharany et al., 2013)	48
Figure (3.13)	The difference of groundwater contour map from year 2000 to 2030 (The Second Scenario) (After El-Fakharany et al., 2013)	49
Figure (3.14)	The difference of groundwater contour map from year 2000 to 2030 (The Third Scenario) (After El-Fakharany et al., 2013)	50
Figure (3.15)	Base map of the study area containing cross sections (modified after RIGW, 1980)	51
Figure (3.16)	cross section 2-2 of the study area (modified after RIGW, 1980)	52
Figure (3.17)	Hydrogeological cross section 5-5 of the study area (modified after RIGW, 1980)	53
Figure (4.1)	Location of groundwater samples in the study area	59
Figure (4.2)	Location map of surface water samples in the study area	61
Figure (4.3)	Location map of the soil samples in the study area	63
Figure (5.1)	Spatial distribution of pH of groundwater samples	73
Figure (5.2)	Spatial distribution of EC of groundwater samples in the study area	74
Figure (5.3)	Spatial distribution of TDS of groundwater samples	75

Figure (5.4)	Percentages of the studied groundwater samples in each class according to Chebotarev's (1955a)	76
Figure (5.5)	Spatial distribution of Na ⁺ in groundwater of the study area	79
Figure (5.6)	Spatial distribution of K ⁺ of the groundwater samples	80
Figure (5.7)	Spatial distribution of Ca ²⁺ in the groundwater samples	81
Figure (5.8)	Spatial distribution of Mg ²⁺ of the groundwater samples	82
Figure (5.9)	Spatial distribution of Cl ⁻ in the groundwater of the study area	85
Figure (5.10)	Spatial distribution of HCO ₃ ⁻ in the groundwater of the study area	86
Figure (5.11)	Spatial distribution of Sulphate (SO ₄ ²⁻) in the groundwater of the study area	87
Figure (5.12)	Spatial distribution of (Cr) in the groundwater of the study area	90
Figure (5.13)	Spatial distribution of (Cu) in the groundwater samples	91
Figure (5.14)	Spatial distribution of (Fe) in the groundwater samples	93
Figure (5.15)	Spatial distribution of (Mn) in the groundwater samples	94
Figure (5.16)	Spatial distribution of (Ni) in the groundwater samples	95
Figure (5.17)	Spatial distribution of (Pb) in the groundwater samples	96
Figure (5.18)	Spatial distribution of (Zn) in the groundwater samples	97
Figure (5.19)	Dendogram for 8 variables from cluster analysis in R-mode	101
Figure (5.20)	Schoeller diagram of groundwater samples	102
Figure (5.21)	Durov diagram of groundwater samples	104
Figure (5.22)	Piper diagram of groundwater samples	105
Figure (5.23)	Major cations concentrations of surface water	107
Figure (5.24)	Major anions concentrations of surface water	109
Figure (6.1)	Spatial distribution of (Cd) in the study area	118

Figure (6.2)	Spatial distribution of (Co) in the study area	120
Figure (6.3)	Spatial distribution of (Cr) in the soils	120
Figure (6.4)	Spatial distribution of (Cu) in soils	121
Figure (6.5)	Spatial distribution of (Ni) in soils	122
Figure (6.6)	Spatial distribution of (Pb) in the soils	123
Figure (6.7)	Spatial distribution of (Zn) in the study area	124
Figure (6.8)	Dendrogram in R-mode of the studied soil samples	126

LIST OF TABLES

	Table	Page
Table (1.1)	Meteorological report of Inchas station from 1976 to 2005	9
Table (1.2)	Meteorological report of Belbees station from 1976 to 2005	9
Table (1.3)	Aridity degrees (Emberger, 1955)	13
Table (1.4)	Degree of aridity for Inshas and Belbees stations	14
Table (5.1)	Physicochemical parameters of the groundwater of the study area	72
Table (5.2)	Percentages of the studied groundwater samples in each class of Chebotarev's (1955a)	76
Table (5.3)	Concentrations of major cations of groundwater of the studied area	78
Table (5.4)	Concentrations of major cations of groundwater of the studied area	84
Table (5.5)	Concentration of heavy metals in groundwater of the study area (ppm)	88
Table (5.6)	A Comparison between maximum concentrations of heavy metals in the study area and those in different parts of the Nile Delta	98
Table (5.7)	Metal concentrations related to industrial activities in the study area	99
Table (5.8)	Correlation matrix of the heavy metals for the study area	100
Table (5.9)	Physicochemical parameters of surface water	106
Table (5.10)	Concentrations of major cations of surface water	108
Table (5.11)	Concentrations of major anions of surface water of the study area	110
Table (5.12)	Concentrations of heavy metals in surface water of the study area	111