

Comparative Study between Femoral Arterial Doppler and Echocardiography in fluid responsiveness assessment in Septic Shock Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Intensive Care Medicine

By

Eslam Kandil Abd El Moaty Ghallab

M.B.,B.Ch – Cairo University

Supervised by

Prof. Dr. Hany Mohamed Mohamed EL Zahaby

Professor of Anesthesiology, ICU and Pain Management Faculty of Medicine - Ain Shams University

Ass. Prof. Ahmed Mohamed El Sayed El Henawy

Assistant Professor of Anesthesiology, ICU and Pain Management Faculty of Medicine - Ain Shams University

Dr. Ahmed Monier Ahmed Youssef

Lecturer of Anesthesiology, ICU and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

My profound thanks and deep appreciation to **Prof.Dr. Hany Mohamed Mohamed EL Zahaby**, Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, for his endless patience, valuable remarks, guidance, rich knowledge, criticism and support.

I would like to express my profound gratefulness and sincere appreciation to **Ass.Prof.Ahmed Mohamed El Sayed El Henawy**, Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, for his support, valuable remarks and suggestions.

I wish to express my thanks to **Dr. Ahmed Monier Ahmed Youssef,** Lecturer of anesthesia and Intensive Care,

Faculty of Medicine, Ain Shams University, for his kindness,

patience, great effort, continuous help, distinguished care

supervision and encouragement.

Finally, I would like to express my deepest thanks and gratitude to every member of my family, my professors and colleagues who stood beside me throughout this work, giving me their support, sympathy and guidance.

Contents

Subjects	Page
List of abbreviations	
List of figures	IX
List of tables	XI
• Introduction	1
Aim of the work	5
• Review of Literature	
♦ Definitions	6
♦ Initial resuscitation	7
♦ Screening for sepsis and performance improvement	13
♦ Diagnosis	15
♦ Antimicrobial therapy	19
♦ Source control	25
♦ Fluid therapy	28
♦ Vasoactive medication	30
◆ Corticosteroids	35
♦ Blood products	37
♦ Immunoglobulins	39
♦ Blood purification	39

List of Contents

	♦ Anticoagulants	40
	♦ Mechanical ventilation	40
	♦ Sedation and analgesia	47
	♦ Glucose control	48
	♦ Renal replacement therapy	50
	Bicarbonate therapy	51
	♦ Venous thromboembolism prophylaxis	52
	♦ Stress ulcer prophylaxis	53
	♦ Nutrition	54
	♦ Fluids responsiveness monitoring parameters	57
	♦ Echocardiographic Assessment of Preload Responsiveness in Critically III Patients	76
	♦ Doppler echocardiography	77
•	Patients and Methods	83
•	Results	90
•	Discussion	110
•	Recommendations	117
•	Conclusion	118
•	Summary	119
•	References	123
•	Arabic Summary	

List of Abbreviations

%Vfmax : Maximal systolic velocity variation

%VTIf : Velocity time integral variation femoral dopler

 Δ **POP** : Plethysmographic waveform variations

ACTH : Adrenocorticotrophic hormone

APACH : Acute physiologic and chronic Health Evaluation

CI : Cardiac index

CPFA : Coupled plasma filtration adsorption

CRRT : Continues renal replacement therapy

CVP : Central venous pressure

DIC : Disseminated intravascular coagulopathy

DSI : Daily sedation interruption

EGDT : Early goal-directed therapy

FC : Fluid challenge

FR : Fluid responsiveness

GEDV : Global end diastolic volume

GRVs : Gastric residual volumes

HFOV : High-frequency oscillatory ventilation

ICU : Intensive care unit

ITBV : Intrathoracic blood volume

IVC : Inferior vena caval

LMWH : Low-molecular-weight heparin

LOS : Length of stay

List of Abbreviations

LVEDA : Left ventricular end-diastolic volume or area

LVOT : Left ventricular outflow tract

LVOT VTI: Left ventricular outflow tract velocity time integral

MAP : Mean arterial pressure

MIC : Minimum inhibitory concentration

MRSA : Methicillin resistant staphylococcus aureus

NIV : Noninvasive ventilation

NMBAs : Neuromuscular blocking agents

PA : Pulmonary artery

PBW: Predicted body weight

PCWP : Pulmonary capillary wedge pressure

PICCO : Pulse index Continuous Cardiac Output

PLR : Passive leg raising

PP : Pulse pressure

PPV : Pulse pressure variation

PPV : Pulse pressure variation

RAP : Right atrial pressure

RBC : Red blood cell

RCTs : Randomized controlled trials

RRT : Renal replacement therapy

RV : Right ventricle

SAP : Systolic arterial pressure

Scvo2 : Central venous oxygen saturation

SOFA : Sequential Organ Failure Assessment Score

List of Abbreviations

SP : Systolic pressure

SPV : Systolic pressure variation

SSC : Staff selection commission

SV : Stroke volume

SVC : Superior vena caval

SVV : Stroke volume variation

SVV : Stroke volume variation

TEE : Transesophageal echocardiography

U.S : United States

UFH : Unfractionated heparin

VAP : Ventilator-associated pneumonia

VTE : Venous thromboembolism

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Heart-lung interactions: Hemodynamic effects of mechanical ventilation. The cyclic changes in left ventricular (LV) stroke volume are mainly related to the expiratory decrease in LV preload due to the inspiratory decrease in right ventricular (RV) filling.	66
<u>2</u>	Measurement of respiratory variation in the diameter of the IVC from a frozen M-mode image.	73
<u>3</u>	The Doppler equation	78
4	Velocity time integral VTI (cm/s) = area under the velocity curve: sum of velocities (cm/s) during the ejection time (sec); t_1 = time one, t_2 = time two,	79
<u>5</u>	Left Ventricular Outflow Tract diameter (LVOT _D) measurement LV: left ventricle, LA: left atrium, Ao: ascending Aorta. (Right) Velocity Time Integral (VTI) measurement.	82
<u>6</u>	Mean arterial pressure before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients	93
7	Heart rate before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	95
<u>8</u>	Respiratory rate before and after fluid administration of 30 ml/kg of NaCl 0.9 % in responder and non-responder patients.	97

List of Figures

<u>No.</u>	<u>Figure</u>	Page
9	Temperature before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	99
<u>10</u>	Serum lactate level before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	101
<u>11</u>	Percentage of patients who respond hemodynamically to fluid resuscitation and patients who didn't respond hemodynamically to fluids.	102
12	Velocity time integral – left ventricle outflow tract (VTI-LV) before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	104
13	Velocity time integral – left ventricle outflow tract (VTI-LV) before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	106
<u>14</u>	Maximal systolic velocity variation - femoral doppler (VFMX) before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	108
<u>15</u>	Numbers of patients who responded to fluid resuscitation as diagnosed by Echo and femoral doppler	109

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>1</u>	Antimicrobial therapy in septic patients.	22
2	Static variables of preload and fluid responsiveness: Cardiac filling pressures	59
<u>3</u>	Dynamic variables of fluid responsiveness.	67
<u>4</u>	Sequential Organ Failure Assessment (SOFA) Score.	84
<u>5</u>	Demographic distribution	91
<u>6</u>	Age distribution	92
<u>7</u>	Mean arterial pressure before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	93
<u>8</u>	Heart rate before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	95
9	Respiratory rate before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	97
<u>10</u>	Temperature before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	99
<u>11</u>	Serum lactate level before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	101
<u>12</u>	Velocity time integral – left ventricle outflow tract (VTI-LV) before and after fluid administration of 30 ml/kg of NaCl 0.9% in	104

List of Tables

No.	<u>Table</u>	<u>Page</u>
	responder and non-responder patients.	
<u>13</u>	Velocity time integral – left ventricle outflow tract (VTI-LV) before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	106
14	Maximal systolic velocity variation - femoral doppler (VFMX) before and after fluid administration of 30 ml/kg of NaCl 0.9% in responder and non-responder patients.	108
<u>15</u>	Numbers of patients who responded to fluid resuscitation as diagnosed by Echo and femoral doppler	109

Introduction

Fluid replacement is considered the cornerstone of resuscitation in critically ill patients especially in patients with septic shock. However, only about 50 % of critically ill hemodynamically unstable patients are responsive to fluids. Furthermore. both under resuscitation and overzealous fluid administration adversely affect the outcome. Consequently, the resuscitation of critically ill patients requires an accurate assessment of the patients' intravascular volume their volume status and responsiveness (Brennan -JM., 2007).

Moreover, myocardial depression plays a significant role in the pathophysiology of shock in up to 60% of septic patients and can develop at an early stage. Hence, it is vital that resuscitation in septic shock should be guided by accurate assessment and monitoring of hemodynamic status of individual patients' therapy (*Brennan -JM.*, 2007).

Traditional methods of determining the adequacy of volume resuscitation have relied on preload measures, there are central venous pressure (CVP), pulmonary artery wedge pressure (PAWP), right ventricular end-diastolic volume index (RVEDVI), left ventricular end-diastolic area index (LVEDVAI), and global end-diastolic volume

(GEDV) also known as static parameters of volume status. However, none of these is accurate in predicting preload responsiveness (*Murphy CV et al.*, 2009).

Both pressure and volume measures of preload are affected by multiple factors other than the volume of blood, for example, vascular tone, intrathoracic pressure, and ventricular compliance. Moreover, the Frank-Starling relationship depends upon preload as well as ventricular function. Therefore, it is physiologically impossible to accurately predict

Preload responsiveness by assessing preload alone. Preload responsiveness can be determined by performing a volume challenge maneuver or by making use of the respiratory variation in the venous or arterial circulation also known as dynamic parameters of volume status (*Tiedemann HP et al., 2006*).

It is important to realize that stroke volume (SV) or cardiac output (CO), or its surrogate, for example, pulse pressure (PP) or arterial blood flow velocity, is the preferred end-point because a preload responsive heart may not be recognized otherwise (*Mari PE et al.*, 2009).

Dynamic parameters of volume status outperform the static ones in predicting preload responsiveness and should be used to optimize preload in septic shock patients:

1. Respiratory variation in:

- a) Central venous pressure (CVP).
- b) Vena cava diameter:
 - 1. Inferior vena cava (IVC).
 - 2. Superior vena cava (SVC).
- c) Arterial blood pressure waveform-derived variables:
 - 1. Pulse pressure variation (PPV).
 - 2. Stroke volume variation (SVV).
- d) Pulse oximeter plethysmographic (POP) waveform amplitude.
- e) Arterial blood flow velocity:
 - 1. Aortic.
 - 2. Brachial artery.
- 2. Passive leg raising (PLR) maneuver.
- 3. Actual fluid challenge (Michard F and Teboul JL, 2002)

Many recent data underlined misinterpretation conditions observed in most of critically ill patients. Transthoracic echocardiography (TTE) allows a noninvasive bedside assessment of cardiac response to volume expansion by measuring aortic velocity time