

Ain Shams University Faculty of Science Chemistry Department

Radiochemical and Biological Characterization of some Radiolabeled Drugs for Nuclear Medicine Applications

Thesis submitted for the degree of PhD in Chemistry

Presented by Mai Adel Abd Ellatif Mourad

B.Sc. (Chemistry / Zoology) 2010 M.Sc. (Analytical Chemistry) 2014

Supervised by

Prof. Dr. Salah Abdel Ghani Abo-El-Enein

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Gehad Genidy Mohamed

Professor of Inorganic and Analytical Chemistry, Faculty of Science, Cairo University

Prof. Dr. Abeer Mohamed Amin

Professor of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority

Dr. Hanan Abd El-Azez Abd El-Razk Elsabagh

Lecturer of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority

Approval Sheet

Radiochemical and Biological Characterization of some Radiolabeled Drugs for Nuclear Medicine Applications

A Thesis Submitted By

Mai Adel Abd Ellatif Mourad

For Ph.D. Degree in Chemistry

This thesis has been approved by:

Prof. Dr. Salah Abdel Ghani Abo-El-Enein

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Gehad Genidy Mohamed

Professor of Inorganic and Analytical Chemistry, Faculty of Science, Cairo University

Prof. Dr. Abeer Mohamed Amin

Professor of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority

Dr. Hanan Abd El-Azez Abd El-Razk Elsabagh

Lecturer of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority

Head of Chemistry Department **Prof. Dr. Ibrahim Hosiny Ali Badr**

Above all, praise to ALLAH almighty, my god, my lord, for his grace and blessing and for not leaving me in the hardest times. My deep thanks to **Prof. Dr. Abeer Mohamed Amin**, Professor of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority, for continues guidance, valuable and fruitful comments and discussions over the whole duration of the study. The author is also greatly indebted to **Dr. Hanan Abd El-Azez Abd El-Razk Elsabagh**, Lecturer of Radiochemistry, Hot Labs Center, Egyptian Atomic Energy Authority, for suggesting the problem, direct supervision and kind help during the experimental work and theoretical calculation.

I express my sincere gratitude to **Prof. Dr. Salah Abdel Ghani Abo-El-Enein**, Professor of Physical Chemistry, Faculty of Science, Ain Shams University, and **Prof. Dr. Gehad Genidy Mohamed**, Professor of Inorganic and Analytical Chemistry, Faculty of Science, Cairo University, for their guidance during the progress of this work.

I would like to appreciate **Prof. Dr. Doaa Farouk**, Professor at Animal Production Research Institute, for introducing me all the facilities to achieve this work.

Many thanks are also directed to **Dr. Sherif Eltamimy**, Physicist at Centre of Radiation Oncology and Nuclear Medicine, Kasr Al-Ainy, for his assistance and cooperation in imaging procedure.

Mai Mourad

Arab Journal of Nuclear Sciences and Applications

ISSN 1110-0451

Web site: ajnsa.journals.ekb.eg

(ESNSA)

Radioiodination and Biological Evaluation of Tizanidine as a Potential Brain Imaging Agent

M.A. Mourad^a, H. Abd El-Aziz^b, A.M. Amin^b, G.G. Mohamed^c and S.A. Abo El-Enein^d

(a) Centre of Radiation Oncology and Nuclear Medicine, Kasr Al-Ainy, Cairo, Egypt

Received 1st May 2017 Accepted 1st Jan. 2018

Labeling was carried out by direct iodination of tizanidine ($100~\mu g$) with radioiodine (^{125}I) in a fast single step at room temperature, to produce ^{125}I -tizanidine (^{125}I -TZN). 50 μg chloramine-T (CAT) was used as an oxidizing agent to oxidize the iodide ion to the iodonium ion, at neutral pH = 7 within 15 min. A high radiochemical yield of 92.8 % \pm 0.1 was obtained. ^{125}I -TZN was stable for 2 h without detection of any by-products in the reaction mixture. The partition coefficient value of ^{125}I -TZN was 2.21 \pm 0.02, showing that it is very lipophilic and can easily cross the blood brain barrier. Biodistribution studies and *in vivo* imaging showed that the initial brain uptake correlated fairly well with the brain-binding affinity of the compound. The brain uptake of ^{125}I -TZN was as high as 5.2 % and 8.0 % in biodistribution studies and *in vivo* imaging at 120 min post injection, respectively. Thus, ^{125}I -TZN is promising in radioreceptor assays for brain imaging.

Keywords: Radioiodination - Tizanidine - Biodistribution- Brain Imaging - SPECT

Introduction

Nuclear medicine imaging involves the detection and spatial mapping of the radiation emitted by a radiopharmaceutical labeled with a specific radionuclide. The objectives of a nuclear medicine scan of the brain may include, for example, the detection of lesions, the evaluation of regional cerebral blood flow (rCBF), or the quantitative determination of a particular metabolic process such as the rate of regional glucose utilization [1]. The development of emission tomography is a good example of the fusion of a number of scientific and medical disciplines to produce an effective imaging technique. There are two different techniques of emission tomography:

positron emission tomography (PET), based on radionuclides which decay by positron emission, and single photon

emission computed tomography (SPECT) which is based on radionuclides which emit gamma rays or X-rays. While PET has some inherent technical advantages over SPECT, the economic reality dictates that SPECT is usually the only technique available in routine clinical practice. Recent innovations in the design of multi-head SPECT systems, which allow them to detect positron-emitting radionuclides, have diminished the sharp distinction between the two techniques [2].

Corresponding Author: mai.adel89@gmail.com

DOI: 10.21608/ajnsa.2018.2178.1017

© Scientific Information, Documentation and Publishing Office (SIDPO)-EAEA

⁽b) Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt

⁽c) Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt

⁽d) Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

LIST OF ABBREVIATIONS

Abbreviation	Item
EC	electron capture
IT	isomeric transition
LET	linear energy transfer
CAT	chloramine-T
SPECT	single-photon emission computed
	tomography
PET	positron emission tomography
BBB	blood-brain barrier
CT	computed tomography
FDG	fluorodeoxyglucose
rCBF	regional cerebral blood flow
TZN	tizanidine
QTP	quetiapine
CBP	cyclobenzaprine
NPs	nanoparticles
NODCAR	National Organization for Drug Control
	and Research
BDH	British Drug Houses
SG-TLC	silica gel thin-layer chromatography
HPLC	high-performance liquid chromatography
HEGAP-Par	high energy general all purpose-parallel
Br	brain
Bl	blood
GIT	gastrointestinal tract
fMRI	functional magnetic resonance imaging

ABSTRACT

Candidate Name: Mai Adel Abd Ellatif Mourad

<u>Title of Thesis:</u> Radiochemical and Biological Characterization of some Radiolabeled Drugs for Nuclear Medicine Applications

<u>Degree (PhD):</u> The PhD of Science in Chemistry, Faculty of Science, Ain Shams University, 2018.

This study aimed to take advantages from drugs that are able to cross the blood-brain barrier for the development of potential radiopharmaceuticals for non-invasive brain imaging. Tizanidine hydrochloride, quetiapine fumarate cyclobenzaprine hydrochloride were successfully labeled with radioactive iodine (125I) using chloramine-T via an electrophilic substitution reaction. 125 I-tizanidine, 125 I-quetiapine and 125 Icyclobenzaprine gave maximum labeling yields of 92.8 % ± 0.1, 94.5 % \pm 1.5 and 91.7 % \pm 0.6, respectively. Biodistribution studies showed that the maximum uptake of radioiodinated tizanidine and quetiapine by the brain of mice was 5.2 % and 3.5 %, respectively, at 120 min post injection while the maximum uptake of radioiodinated cyclobenzaprine was 2.9 % at 240 min post injection. The SPECT imaging confirmed the results of biodistribution studies.

<u>Keywords:</u> Radiopharmaceuticals, Radioiodination, Tizanidine, Quetiapine, Cyclobenzaprine, Brain imaging, Biodistribution, SPECT.

LIST OF CONTENTS

Subject	Page No.
CHAPTER I: INTRODUCTION AND OBJECT OF INVESTIGATION	
IA. INTRODUCTION	1
IA.1. Radioactivity	1
IA.2. Types of Radioactivity	1
IA.3. Radionuclides	2
IA.4. Radiopharmaceuticals	4
IA.5. Types of Radiopharmaceuticals	5
IA.6. Characteristics of Ideal Radiopharmaceuticals	7
IA.7. Quality Control of Radiopharmaceuticals	11
IA.8. Iodine	11
IA.9. Radioactive Waste	19
IA.10. Treatment of Biomedical Radioactive Waste	19
IA.11. Nuclear Medicine	22
IA.12. Human Brain	22
IA.13. Brain Imaging in Nuclear Medicine	29
IA.14. Radiopharmaceuticals for Brain Imaging	36
IA.15. Tizanidine Hydrochloride	38
IA.16. Quetiapine Fumarate	39
IA.17. Cyclobenzaprine Hydrochloride	40
IA.18. Literature Survey	41
IB. OBJECT OF INVESTIGATION	43

LIST OF CONTENTS

Subject	Page No.
CHAPTER II: MATERIALS AND METHODS	
OF INVESTIGATION	
IIA. MATERIALS	44
IIA.1. Chemicals	44
IIA.2. Equipment	45
IIA.3. Animals	46
IIA.4. Buffers	47
	40
IIB. METHODS OF INVESTIGATION	49
IIB.1. Radioiodination	49
IIB.2. Determination of Radiochemical Yield	49
IIB.3. Factors Affecting Radiochemical Yield	50
IIB.4. <i>In vitro</i> Stability	53
IIB.5. Determination of Partition Coefficient	53
IIB.6. Determination of Radiochemical Purity	54
IIB.7. In vivo Biodistribution Studies	54
IIB.8. In vivo SPECT Imaging of TZN	55
IIB.9. In vivo SPECT/CT Imaging of QTP and	56
CBP	
CHAPTER III: RESULTS AND DISCUSSION	
III.1. Effect of Substrate Concentration	57
III.2. Effect of CAT Concentration	60
III.3. Effect of Reaction Temperature	63
III.4. Effect of pH of Reaction Medium	66
III.5. Effect of Reaction Time	69
III.6. In vitro Stability	72

LIST OF CONTENTS

Subject	Page No.
III.7. Lipophilicity	74
III.8. HPLC Analyses	74
III.9. Biodistribution Studies	77
III.10. In vivo SPECT Imaging of TZN	83
III.11. In vivo SPECT/CT Imaging of QTP and	84
CBP	
CHAPTER IV: SUMMARY AND CONCLUSION	NS
IVA. SUMMARY	87
IVB. CONCLUSIONS	91
REFERENCES ARABIC SUMMARY	92

LIST OF TABLES

Table No.	Title	Page No.
Table 1. Examples	of radiopharmaceuticals used as	6
diagnostic a	gents.	
Table 2. Examples	of radiopharmaceuticals used as	7
therapeutic	agents.	
Table 3. Nuclear	characteristics of the main	13
radioisotope	es of iodine.	
Table 4. Neurotransr	mitter receptors and related binding	28
sites that	have been examined by	
autoradiogr	aphy in the human brain.	
Table 5. In vitro stab	ility of ¹²⁵ I-TZN, ¹²⁵ I-QTP and ¹²⁵ I-	73
CBP at opti	mum labeling conditions.	
Table 6. Biodistribut	tion of ¹²⁵ I-TZN in normal mice at	80
different tir	nes.	
Table 7. Biodistribut	tion of ¹²⁵ I-QTP in normal mice at	81
different tir	nes.	
Table 8. Biodistribut	tion of ¹²⁵ I-CBP in normal mice at	82
different tir	nes.	
Table 9. The injected	ed dose percentage of ¹³¹ I-TZN in	84
some organ	s according to SPECT imaging.	
Table 10. The inject	ted dose percentage of ¹³¹ I-QTP in	86
•	gans according to SPECT/CT	
imaging.	_	
Table 11. The inject	ted dose percentage of ¹³¹ I-CBP in	86
some org		
imaging.		

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1. T	he main parts of the human brain.	23
Figure 2. S	cintillation gamma camera.	31
Figure 3. P	arathyroid planar scan image.	31
Figure 4. P	ET/CT gamma camera.	33
Figure 5. W	Vhole body PET scan image.	33
Figure 6. S	PECT gamma camera.	35
Figure 7. B	rain SPECT scan image.	36
Figure 8. C	hemical structure of TZN hydrochloride.	39
Figure 9. C	hemical structure of QTP fumarate.	40
Figure 10.	Chemical structure of CBP hydrochloride.	41
Figure 11.	The radiochemical yields of ¹²⁵ I-TZN as a	58
	function of substrate amount.	
Figure 12.	The radiochemical yields of ¹²⁵ I-QTP as a	59
	function of substrate amount.	
Figure 13.	The radiochemical yields of ¹²⁵ I-CBP as a	60
	function of substrate amount.	
Figure 14.	The radiochemical yields of ¹²⁵ I-TZN as a	61
	function of CAT amount.	
Figure 15.	The radiochemical yields of ¹²⁵ I-QTP as a	62
	function of CAT amount.	
Figure 16.	The radiochemical yields of ¹²⁵ I-CBP as a	63
	function of CAT amount.	
Figure 17.	Effect of temperature on the radiochemical	64
	yield of ¹²⁵ I-TZN.	
Figure 18.	Effect of temperature on the radiochemical	65
	yield of ¹²⁵ I-QTP.	