

Evaluation Of Serum Levels Of Erythroferrone And Hepcidin In Egyptian Beta Thalassemia Intermedia Patients And Its Correlation To Iron Overload

Thesis

Submitted for partial fulfillment of master degree in Internal medicine

Presented by

Reham Ali Elmetwally Zarzour

M.B., B.Ch

Supervised by

Prof. Dr. Nevine Nabil Mostafa

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Prof. Dr. Walaa Ali El Salakawy

Associate Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Alia Mohammed Saeed Ahmed

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

تقييم مستويات الاريثروفيرون و الهيبسيدين في سيروم مرضى انيميا البحر □المتوسط المصريين نوع بيتا المتوسط و ارتباطه بزيادة نسبة الحديد بالجسم

رسالة

توطئة للحصول علي درجة الماجستير في الباطنة العامة مقدمة من

☐ ريهام على المتولى زرزور/الطبيبة بكالوريوس الطب و الجراحة

تحت إشراف

□أد/ نيفين نبيل مصطفى

أستاذ الباطنة العامة و امراض الدم الإكلينكية كلية الطب- جامعة عين شمس

أم/ ولاء على السلكاوي

أستاذ مساعد الباطنة العامة و امراض الدم الإكلينكية كلية الطب- جامعة عين شمس

د/ علياء محمد سعيد أحمد

مدرس الباطنة العامة و امراض الدم الإكلينكية
كلية الطب- جامعة عين شمس
كلية الطب
كلية الطب
جامعة عين شمس

سورة البقرة الآية: ٢١

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof Dr Nevine Nabil Mostafa**, Professor of Internal Medicine and Clinical Hematology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Walaa Ali El Salakawy,** Assistant Professor of Internal Medicine and Clinical Hematology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work

I wish to express my great thanks and gratitude **Dr. Alia**Mohammed Saeed Ahmed, Lecturer of Internal Medicine and
Clinical Hematology, Ain Shams University, for her kind
supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Subjects	Page
• List of Abbreviations	I
List of table	IV
List of Figures	V
• Introduction	1
Aim of the Work	3
Review of literature:	
Chapter 1: Introduction to beta thalassemi	a 4
Chapter 2: Management of beta thalassem	ia
intermedia	25
Chapter 3: Iron metabolism and iron overlo	oad . 48
Patients And Methods	60
Results	69
• Discussion	104
• Summary	117
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

LIST OF ABBREVIATIONS

ALT : Alanine transaminase

ANC : Absolute neutrophil count

ARMS : Amplification refractory mutation system

AST : Aspartate transaminaseBMD : Bone mineral density

BMP : Bone morphogenetic protein : Beta thalassemia intermedia

B-TM: Beta thalassemia major

CDAII: Congenital dyserythropoeitic anemia type II

CRDB : Covalent reverse dot blot hybridization

CT : Computed tomographyCVS : Chorionic Villus SamplingDE-52 : Diethylaminoethyl cellulose

DEXA : Dual Energy X-ray absorptiometry

DFO : DeferoxamineDFP : DeferiproneDeferasirox

DMT1 : Divalent metal transporter-1

DNA : Deoxyribonucleic acidECG : Electrocardiogram

ELISA : Enzyme Linked Immunosorbent Assay

ERFE : Erythropoietin : Erythroferrone

FBS: Fetal blood sampling

Fe2+ : Ferrous state Fe3+ : Ferric state

GDF-15 • Growth differentiation factor 15

Hb
Hemoglobin
Hemoglobin A1
HbA₂
Hemoglobin A2
HbE
Hemoglobin E
Hemoglobin E

EList of Abbreviations

Hemoglobin H

HBV: Hepatitis B virus

HCC : Hepatocellular carcinomaHCP1 : Heme carrier protein 1

HCV: Hepatitis C virus

HPLC: High-performance liquid chromatography

HU: Hounsfield units
JAK2: Janus Kinase 2
LCI: Labile cellular iron

Liver iron concentration

: Left ventricular end diastolic dimesnsion

LVEF Left ventricular ejection fraction

: Left ventricular end systolic dimension

Mean corpuscular hemoglobin

MCHC: Mean corpuscular hemoglobin concentration

MCV : Mean corpuscular volume
 MRI : Magnetic Resonance Imaging
 NIPD : Non-invasive prenatal detection
 NTBI : Non-transferrin bound iron

, Tron transferring boards from

NTDT: Non-transfusion-dependent thalassaemia

Pah . Pulmonary artery hypertension

PO4 : Phosphorus

PTH : Parathyroid hormone

RBC: Red blood cells

RDW: Red cell distribution width

RVSP: Right ventricullar systolic pressure

SF : Serum ferritin

SQUID : Superconducting quantum interference devices

: Triiodothyronine

: Thyroxine

TDT: Transfusion-dependent thalassaemia

TIBC : Total iron-binding capacity

&List of Abbreviations

: Thalassemia International Federation

TLC: Total leucocytic count

TMPRSS-6 : Transmembrane protease serine-6

TSH: Thyroid stimulating hormone

TWSG1 : Twisted gastrulationWBC : White blood cells countWHO : World Health Organization

⊠List of Table

LIST OF TABLES

Tab. No.	Subject	Page
Table (1)	Demographic data of the study cohort.	69
Table (2)	Clinical data of patients.	70
Table (3)	Laboratory data of patients	74
Table (4)	Radiological data of the patients	78
Table (5)	Markers of the study for cases and controls	80
Table (6)	Ferritin levels in relation to variables	83
Table (7)	Hepcidin levels in relation to variables	87
Table (8)	Erythroferrone levels in relation to variables	90
Table (9)	Correlations between the quantitative variables of the patients and the levels of the markers of the study	93
Table (10)	Agreement (sensitivity, specificity) for serum hepcidin and serum erythroferrone to differentiate cases from controls	94
Table (11)	Comparison of group Ia and group Ib in regards to different study variables	97
Table (12)	Comparison between low erythroferrone patients and high erythroferrone patients.	101

∠List of Figures

LIST OF FIGURES

Fig. No.	Subject	Page
Fig. (1)	The fetal to adult globin switch	8
	Spectrum of thalassaemia syndromes based on	14
Fig. (2)	clinical severity and transfusion requirement.	
Fig. (3)	Pathophysiology of β-thalassemia.	18
Fig. (4)	Factors contributing to hypercoagulability in	23
Fig. (4)	thalassemia patients.	
	The metabolism of iron starting from absorption	51
Fig. (5)	of heme and non-heme iron, intraceullar	
11g. (3)	processing in enterocytes, and export of iron out	
	of enterocytes using ferroportin	
Fig. (6)	Hepcidin regulates systemic iron homeostasis.	55
Fig. (7)	Erythroferrone in systemic iron homeostasis.	58
Fig. (8)	Ferritin level of cases and control	80
Fig. (9)	Hepcidin levels of cases and control	81
Fig. (10)	Erythroferrone levels of cases and control	81
Fig. (11)	ROC curve of hepcidin	95
Fig. (12)	ROC curve of erythroferrone	95
Fig. (13)	Classification of patients into low hepcidin group	96
	and high hepcidin group.	
Fig. (14)	Percentage of cases in accordance with serum	100
	erythroferrone levels.	

ABSTRACT

Background and aims: Iron overload is an important feature of beta thalassemia, as it mediates much of the morbidity and mortality of the disease. Currently, iron overload is assessed with laboratory markers such as serum ferritin and imaging studies such as magnetic resonance imaging (MRI) T2* on the liver and the heart. However, they are not without their drawbacks, such as serum ferritin is not a specific marker, rises in many acute inflammatory conditions and MRI is not widely available and is a relatively expensive investigation. This study aimed at investigating the accuracy of evaluation of serum levels of erythroferrone and hepcidin in predicting iron overload and its complications. Methods: We performed this crosssectional case-control study with a total number of 56 participants; 40 cases with beta thalassemia intermedia and 16 healthy age and sex matched controls. Patients were recruited from the outpatient clinic of the Clinical Hematology and Oncology Unit, Internal Medicine Department, Ain Shams University, Cairo, Egypt during the period between January 2018 and July 2018. We collected blood samples and measured the levels of serum erythroferrone and hepcidin. We compared the ability of these levels to predict iron overload. Results: cases had lower mean level of hepcidin in relation to controls being 170.250 ± 108.663 ng/ml versus 278.125 ± 72.316 ng/ml respectively. As for erythroferrone levels; the marker of the study; cases had a mean value which is nearly triple that of controls. Cases had a mean of 638.500 ± 407.567 ng/l; however, controls had a mean of 252.500 ± 83.944 ng/l. Upon correlating erythroferrone to ferritin and hepcidin, it was not correlated to either of them with P-values of 0.145 and 0.122. Also, no correlation between it and iron complicatons. Conclusions: hepcidin and erythroferrone cannot be used as markers of iron overload.

Keywords: hepcidin, errythroferrone`

INTRODUCTION

β-Thalassemia is a hereditary anemia characterized by ineffective erythropoiesis and hemolysis (*Rund and Rachmilewitz*, 2005). The underlying mechanism is defective production of hemoglobin β-chains, resulting in excess of α-chains, which are unstable and precipitate to form intracellular inclusion bodies. This excessive intracellular deposition of α-chain material is responsible for accelerated apoptosis of the erythroid precursors and for peripheral hemolysis of the erythrocytes (*Pootrakul et al.*, 2000).

Distinction between the various phenotypes of βthalassemia relies primarily on the clinical severity of the disease, which should be assessed both at initial presentation and over a period of close follow-up (Rund and Rachmilewitz 2005). Beta thalassemia intermedia (β-TI) is a disease of intermediate severity where affected patients usually present with a later onset of microcytic anemia and milder clinical symptoms compared to beta thalassemia major (β-TM) (*Taher et al.*, 2006). In contrast to patients with TM, in whom iron loading occurs mainly as a result of transfusion therapy, patients with TI accumulate iron primarily due to increased intestinal iron absorption (Origa et al., 2007). Excess iron is extremely toxic to all cells of the body and can cause serious and irreversible organic damage, such as cirrhosis, diabetes, heart disease, and hypogonadism (*Melchiori et al.*, 2010).

For the last decade, investigators have focused on understanding the mechanisms underlying iron overload in ineffective erythropoiesis, hypothesizing that correction of ineffective erythropoiesis would significantly reduce iron overload and improve anemia, ultimately increasing overall survival of patients with β -thalassemia. Hepcidin, a small peptide mainly produced by the liver, is absolutely required for the maintenance of systemic iron homeostasis in basal conditions (*Nicolas et al.*, 2003). Hepcidin acts by binding to ferroportin, the sole known cellular iron exporter, leading to ubiquitination, internalization, and degradation of ferroportin in lysosomes. Decreased hepcidin production leads to the stabilization of ferroportin at the cellular membrane and promotes the absorption of dietary iron in the duodenum (*Qiao et al.*, 2012).

The erythroid regulator erythroferrone (ERFE) is produced by erythroid precursors in the marrow and the spleen and acts directly on the liver to decrease hepcidin production, and thereby increase iron availability for new red blood cell synthesis. ERFE also contributes to the recovery from anemia of inflammation by suppressing hepcidin and increasing iron availability. In contrast to its adaptive role in the physiological recovery from anemia, ERFE may also act pathologically to suppress hepcidin production and mediate iron overload and severe clinical complications in inherited anemias with ineffective erythropoiesis such as β -thalassemia (*Kautz et al., 2014*).

AIM OF THE WORK

The aim of the present study is to first measure levels of erythroferrone and hepcidin in the serum of adult patients with beta thalassemia intermedia. Next, to correlate their serum levels to each other. Finally, both will be evaluated for their relationships to degree of iron overload and its associated complications.

INTRODUCTION TO BETA THALASSEMIA

Anemia; definition

Anemia is a global public health problem affecting both developing and developed countries at all ages. According to the World Health Organization (WHO), anemia is defined as hemoglobin (Hb) levels <12.0 g/dL in women and <13.0 g/dL in men. However, normal Hb distribution varies not only with sex but also with ethnicity and physiological status. New lower limits of normal Hb values have been proposed, according to ethnicity, gender, and age. Anemia is often multifactorial and is not an parameters, the underlying pathological mechanism and patient history should be taken into account. (*Cappellini and Motta*, 2015)

Symptoms and signs of anemia

In general, the signs and symptoms of anemia are unreliable in predicting the degree of anemia. Several factors determine the symptomatology of anemia, with time of onset and overall baseline health of the patient being the most important. Patients who gradually develop anemia over a period of months can tolerate lower hemoglobin owing to the use of compensatory mechanisms. Because blood delivers oxygen, many of the signs are related to lack of oxygen delivery, chiefly, fatigue and shortness of breath. On physical examination, anemia is manifested by paleness