

The Privilege of Proton Magnetic Resonance Spectroscopy in Evaluating Ovarian Tumors

Thesis

Submitted for Partial Fulfillment of the Master Degree in Radio diagnosis

> By Noor Laith Salman M.B, Ch.B

> > Supervised by

Prof. Abeer Abd-Almaqsoud Hafez

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. Merhan Ahmed Nasr

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Abeer Abd-Almaqsoud Hafez, Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Merhan Ahmed Masr,** Lecturer of Radiodiagnosis Faculty of Medicine – Ain Shams University, for her kind care, valuable instructions, and great assistance throughout this work.

Noor Laith Salman

This work is dedicated to . . .

My beloved Father, to whom I owe everything I ever did in my life and will achieve.

My Mother for always being there for me and all the nights she stayed with me.

My Brother and My Sister for their support

My Husband for being the light of my life and God's gift to me, my backbone

Finally My Jovely Kids Jana & Qamar

List of Contents

Title	Page No.
List of Abbreviations	6
List of Tables	7
List of Figures	9
Introduction	1
Aim of the Work	15
Review of Literature	
Anatomy of the Ovary	16
Pathology of the Ovarian Tumors	26
Pelvic MR Imaging Techniques	48
 MR Imaging Features of Ovarian tumors 	67
Patients and Methods	92
Results	99
Case Presentation	125
Discussion	139
Summary	147
Conclusion	148
References	149
Arabic Summary	

List of Abbreviations

Full term Abb. Ala.....AlanineBOLD.....Blood oxygen level-dependent Cc..... Choriocarcinoma CHESS...... Chemical-shift selective suppression Cho..... Choline Cr..... Creatine CSI..... Chemical shift imaging DCE-MRI Dynamic contrast-enhanced MRI DWI...... Diffusion-weighted imaging EC Embryonal carcinoma FIGO...... Federation of Obstetrics and Gynecology GCTs..... Germ cell tumors Hz.....HertzISIS.....Image Selected In Vivo Spectroscopy MCTs Mature cystic teratomas MR Magnetic resonance MRI...... Magnetic resonance imaging MRS...... Magnetic resonance spectroscopy NAA N-acetyl aspartate OGCTs..... Ovarian germ cell tumors OSE...... Ovarian surface epithelial PRESS...... Point Resolved Spectroscopy RF.....Radiofrequencies ROI Regions of interest S/N.....Signal to noise ratio SI...... Spectroscopic imaging STEAM..... Stimulated Echo Acquisition Mode SV Single-voxel TOA..... Tubo-ovarian abscesses WHO World health organization YST...... Yolk sac tumors

List of Tables

Table No.	Title	Page No.
Table (1): Table (2): Table (3): Table (4):	WHO, classification for sex cord tum TNM staging system for ovarian tum FIGO Staging of Ovarian Cancer Technical challenges of MRS and p solutions	nors45 46 possible
Table (5):	Criteria for differentiating benign	
Table (6): Table (7):	malignant ovarian masses Parameters of pelvic conventional M Age distribution in the studied paties	RI94
Table (8):	Tumor type stratified by patient categories	-
Table (9):	CA125 measurement in different types.	tumor
Table (10):	Histopathological results of the ma the current study	sses in
Table (11):	Masses diagnosed during follow up	
Table (12):	Lesion signal intensity in conve MRI (T2).	
Table (13):	T2 of the studied masses diagnosed follow up	during105
Table (14):	Choline Peak of the studied masses	
Table (15):	Choline Peak of the studied	
Table (16):	diagnosed during follow up	gnostic ntiating
Table (17):	between benign and malignant tumo Best cut off point of Choline Ra differentiating between benign	tio for and
m 11 (40)	malignant tumors	
Table (18):	Creatine Peak of the studied masses	
Table (19):	Creatine Peak of the studied diagnosed during follow up	

List of Cables Cont...

Table No.	Title	Page	No.
Table (20):	Area under the curve displaying diag accuracy of Creatine for different		
Table (21):	between benign and malignant tumor Best cut off point of Creating differentiating between benign	e for	113
	malignant tumors		
Table (22):	Lipid Peak of the studied masses		116
Table (23):	Lipid Peak of the studied masses diag	gnosed	
	during follow up		117
Table (24):	Naa Peak of the studied masses		118
Table (25):	Naa Peak of the studied masses diag	nosed	
	during follow up		
Table (26):	Cho/Cr Ratio		
Table (27):	Area under the curve displaying diag accuracy of Choline/Creatine Rati differentiating between benign	nostic o for	
	malignant tumors		122
Table (28):	Best cut off point of Choline/Creatine	Ratio	
	for differentiating between benign malignant tumors		123
Table (29):	Correlation between CA125	&	
	Choline/Creatine Ratio		124

List of Figures

Fig. No.	Title Page N	10.
Fig. (1):	Location, the broad ligament (left), and blood	
Fig. (2):	supply to the uterus and ovaries (right) Blood Supply to the Female Reproductive	17
1 1g. (2).	Tract	20
Fig. (3):	Sagittal MRI Planes Landmarks.T2 WI	
Fig. (4):	Axial MRI plane Landmark	
Fig. (5):	Classification of ovarian tumors	
Fig. (6):	Unilocular serous cystadenoma. Unilocular	
3 \ \ \	ovarian cyst with a thin regular wall	29
Fig. (7):	Gross specimen of resected ovarian mucinous	
	cystadenoma	30
Fig. (8):	Gross specimen of resected ovarian	
	endometrioid tumor	31
Fig. (9):	Malignant brunner tumor	
Fig. (10):	Fibroma	
Fig. (11):	Ovarian thecoma	
Fig. (12):	Granulosa cell tumor adult type	
Fig. (13):	Gross specimen of sertoli leydig tumor	38
Fig. (14):	Gross specimen of a large adenexal mass	
	representing a large ovarian teratoma with	
	intralesional hair within	40
Fig. (15):	Macroscopic specimen of ovarian yolk sac	4.0
T' (10)	tumor	42
Fig. (16):	Macroscopic specimen of ovarian	40
D' - (15)	choriocarcinoma	43
Fig. (17):	Spectra of normal ovarian surface epithelial	
	(OSE) cells, analysis of signal that is detected in an MR study	51
Fig. (18):	This example illustrates that the S/N of a	01
rig. (10).	spectrum needs to be considered before	
	drawing any conclusions	59
Fig. (19):		
8. (10).		

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (20): Fig. (21):	Proton MRS in a case of thecoma Borderline malignant mucinous cystic	tumor
Fig. (22):	in a 29-year-old woman	n fat e solid
Fig. (23):	massTypical dermoid in a 78-year-old female	
Fig. (24):	T1a ovarian cancer	
Fig. (25):	T1b ovarian cancer	
Fig. (26):	Proton MRS of a case of simple serou	
8 \ /	revealed Cho, NAA and lactate peaks	•
Fig. (27):	Proton MRS in a case of clear cell carcin	
Fig. (28):	Proton MRS in a case of dysgerminoma.	74
Fig. (29):	Proton MRS in a case of fibroma	75
Fig. (30):	Proton MRS in cases of malignant and	benign
	ovarian tumor	
Fig. (31):	53-year-old women with serous cystader	
Fig. (32):	27-year-old women with borderline mu	
(0.0)	tumor	
Fig. (33):	69-year-old women with	
F' - (0.4)	cystadenocarcinoma	
Fig. (34):	Mucinous cystadenocarcinoma in a 61-y	
Fig. (35):	woman Serous cystadenocarcinoma	
Fig. (36):	Mucinous cystadenocarcinoma in a 61-y	
1 1g. (00).	woman	82
Fig. (37):	Mucinous cystadenoma in a 28-y	
1 1g. (01)1		82
Fig. (38):	Proton MRS in a case of endometrial cys	
Fig. (39):	Proton MRS without water suppression	
3 (==/-	case of dermoid cyst	

List of Figures Cont...

Fig. No.	Title Page I	No.
Fig. (40): Fig. (41):	Proton MRS in a case of mature cystic teratoma. 78-year-old woman with left ovarian mucinous cystadenoma	
Fig. (42):	44-year-old women with metastatic squamous	
Fig. (43):	cell carcinoma	
Fig. (44):	47-year-old woman with salpingitis	
Fig. (45):	37-year-old women with paratubal cyst	
Fig. (46):	48-year-old women with follicular cyst	
Fig. (47):	38-year-old woman with endometriosis	
Fig. (48):	MRS of cystic ovarian lesions	
Fig. (49):	Age distribution in the studied patients	
Fig. (50):	Tumor type stratified by patients' age	
	categories	
Fig. (51):	CA125 measurement in different tumor types	102
Fig. (52):	ROC Curve displaying diagnostic accuracy of	
	Choline for differentiating between benign and malignant tumors	108
Fig. (53):	ROC Curve displaying diagnostic accuracy of	
	Creatine for differentiating between benign	
	and malignant tumors	112
Fig. (54):	ROC Curve displaying diagnostic accuracy of	
	Choline/Creatine Ratio for differentiating	
	between benign and malignant tumors	121
Fig. (55):		
	Chalina/Croatina Patia	194

Introduction

varian masses account for most common indication for gynecological surgery, but definitive diagnosis is not possible until the surgery and histopathological examination have been performed. However, the preoperative characterization of the lesion is crucial to decide the type of surgery and feasibility of conservative management and probability of malignancy, which is based mostly on imaging appearance (*Sampathi and Sindhu*, 2017).

The optimal assessment of an adnexal mass requires a multidisciplinary approach, based on physical examination, laboratory tests and imaging techniques. An important issue to consider in the management of ovarian masses is that they are very common, but most of them are benign and only a small part is borderline or malignant. Preoperative biopsy should not be performed in ovarian masses, particularly if the mass appears to be surgically resectable at the moment, as this invasive procedure raises the risk of spreading cancer cells and potentially leads to iatrogenic upstaging worsening the prognosis. So diagnostic imaging plays a crucial role in detection, characterization and staging of adnexal masses (*Fotiet al.*, 2016). However, the only definitive diagnosis of an ovarian masses is through histology (*Yeoh*, 2015).

Several imaging modalities are available for detecting ovarian tumors; however there is no single reliable diagnostic

method. Ultrasonography plays a pivotal role in detecting ovarian lesions and differentiates solid, cystic and complex cystic lesions

With its multiplanar capability, superior tissue contrast and different sequences, MRI becomes a crucial method of investigation of ovarian lesions. MRI has high sensitivity (97%) and specificity (84%) (Mohaghegh and Rockall, 2012).

Magnetic resonance (MR) imaging may provide useful information for the characterization of ovarian masses as nonneoplastic or neoplastic, and, in the latter case, as benign or malignant (Sampathi and Sindhu, 2017).

Therefore, radiologists play an important role in the multidisciplinary approach of ovarian mass, and, though different pathological conditions may have similar radiologic manifestations, they should be aware of MR imaging features of ovarian lesions that may orientate the differential diagnosis (Foti et al., 2016).

Magnetic resonance imaging, MRI, provides high spatial resolution, such that morphology is very well visualized. With the aid of magnetic resonance imaging (MRI), adnexal masses with morphological characteristic that are indeterminate on trans vaginal ultra sound can sometimes be better identified as and with benign or malignant, magnetic spectroscopy it become possible to go beyond anatomy to

assess the metabolic features of tissues or organs (Belkić and Belkić, 2017).

MRS is a non-invasive technique that enables the detection, identification, and quantification of biochemical compounds or metabolites in the tissues. Metabolites that can be measured using 1H-MRS include N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), lactate, glutamine, glutamate, lipids, and macromolecules (Sidek et al., 2016).

MRS patterns of benign and malignant adnexal tumors differ. The choline-to-creatine ratio can help clinicians differentiate benign from malignant tumors with 94.1% sensitivity, and 97.1% specificity (Ma et al., 2015).

AIM OF THE WORK

The aim of our study is to highlight the role of magnetic resonance spectroscopy as a non-invasive technique which may effectively assist in differentiating benign from malignant ovarian masses.