

ASSESSMENT OF CORNEAL THICKNESS IN HEALTHY AND DISEASED CORNEAS BY DIFFERENT IMAGING TECHNIQUES

Thesis

Submitted for Partial Fulfillment of MD Degree In Ophthalmology

By

Doaa Maamoun Mohamed Ashour

M.B., B.Ch, M.Sc. Ain Shams University

Under supervision of

Prof. Dr. Khaled Abd Elwahab El Tagoury

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Maged Maher Salib Roshdy

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Ahmed Taha Ismail

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine – Ain Shams University
Cairo- Egypt
2018

ACKNOWLEDGMENT

I would like to express my deepest gratitude and thanks to **Prof. Dr. Khaled Abd Elwahab Eltagoury,** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his support and encouragement throughout my research period.

I am extremely grateful and indebted to **Ass. Prof. Dr. Maged Maher Salib Roshdy,** assistant professor of Ophthalmology,
Faculty of Medicine, Ain Shams University, for his expert,
sincere and valuable guidance, who taught me the art and
science of research.

I would also like to thank **Dr. Ahmed Taha Ismail**, lecturer of Ophthalmology, Ain Shams University, for his great support and effort during the preparation and revision of the whole work.

Special thanks to my husband Mohamed, my family and my colleagues for their help and support in this work.

CONTENTS

Introduction	
Review of literature	
Anatomy and pathology	2
Corneal thickness measurement	13
Optically based AS imaging	15
Ultrasound based AS imaging	33
Aim of the work	36
Subjects and Methods	37
Results	46
Discussion	87
Conclusion	103
Summary	104
References	106
1	الملخص

LIST OF TABELS

Table 1	Age (years) and eye among the studied groups	46
Table 2	CCT (µm) among Normal group	47
Table 3	CCT difference among Normal group	51
Table 4	Correlations of CCT difference among Normal group	52
Table 5	CCT (µm) among KC group	54
Table 6	CCT difference among KC group	57
Table 7	Correlations of CCT difference among KC group	58
Table 8	CCT (µm) among Scar group	59
Table 9	CCT difference among Scar group	62
Table 10	Correlations of CCT difference among Scar group	63
Table 11	Scar depth (µm) among Scar group	65
Table 12	Scar depth difference (OCT-Pentacam) grades among Scar group	68

Table 13	Correlations of scar depth difference (OCT-Pentacam) among Scar group	69
Table 14	TLT (µm) among Normal group	70
Table 15	TLT difference (OCT-Pentacam) grades among Normal group	71
Table 16	Correlations of TLT difference (OCT-Pentacam) among Normal group	72
Table 17	TLT (µm) among KC group	73
Table 18	TLT difference (OCT-Pentacam) grades among KC group	74
Table 19	Correlations of TLT difference (OCT-Pentacam) among KC group	75
Table 20	TL (μm) among Scar group	76
Table 21	TLT difference (OCT-Pentacam) grades among Scar group	77
Table 22	Correlations of TLT difference (OCT-Pentacam) among Scar group	78
Table 23	TL distance (µm) among Normal group	79
Table 24	TL distance difference (OCT-Pentacam) grades among Normal group	80
Table 25	Correlations of TL distance difference (OCT-Pentacam) among Normal group	81

Table 26	TL distance (µm) among KC group	82
Table 27	TL distance difference (OCT-Pentacam) grades among KC group	83
Table 28	Correlations of TL distance difference (OCT-Pentacam) among KC group	84
Table 29	TL distance (µm) among Scar group	85
Table 30	TL distance difference (OCT-Pentacam) grades among Scar group	86
Table 31	Correlations of TL distance difference (OCT-Pentacam) among Scar group	87

LIST OF FIGURES

FIGURE 1	LIGHT MICROSCOPIC PICTURE OF NORMAL CORNEA	2
FIGURE 2	DUA'S LAYER WITH ELECTRON MICROSCOPE	6
FIGURE 3	ORBSCAN MACHINE IN THE SIDE VIEW AND FRONT VIEW	16
FIGURE 4	PRINCIPLE OF OCT	20
FIGURE 5	CROSS SECTIONAL IMAGE OF THE NORMAL CORNEA.	21
FIGURE 6	EXAMPLE OF CORNEAL IMAGES OF VARYING SNR	23
FIGURE 7	VISANTE PACHYMETRIC MAPPING OF KERATOCONIC	24
	EYE WITH CENTRAL THINNING	
FIGURE 8	SCHEIMPFLUG PRINCIPLE	26
Figure 9	VARIOUS SCHEIMPFLUG DEVICES COMMONLY	28
	AVAILABLE.	
FIGURE 10	SCHEIMPFLUG IMAGE OF THE CORNEA AND	30
	ANTERIOR SEGMENT	
FIGURE 11	GALILEI PRINT OUT	31
FIGURE 12	TOMEY TMS 5 PRINT OUT	32
FIGURE 13	ULTRASOUND BIOMICROSCOPIC APPEARANCE OF	35
	NORMAL EYE	
FIGURE 14	REFRACTIVE 4 IMAGE DISPLAY OF PENTACAM	39
FIGURE 15	SCAR DEPTH MEASUREMENT AFTER IMAGE COLOUR	40
	INVERSION AND ZOOM	
FIGURE 16	ANTERIOR SEGMENT LENS ADAPTOR ATTACHED TO THE	41
	OBJECTIVE LENS	
FIGURE 17	AS OCT CORNEAL TOP THICKNESS AND THINNEST	42
	LOCATION	
FIGURE 18	AS OCT MANUAL MEASUREMENT OF FLAP DEPTH	42
FIGURE 19	BLAND ALTMAN PLOT FOR CCT (US VERSUS PENTA)	48
	AMONG NORMAL GROUP	
FIGURE 20	BLAND ALTMAN PLOT FOR CCT (US VERSUS OCT)	48
	AMONG NORMAL GROUP	
FIGURE 21	BLAND ALTMAN PLOT FOR CCT (PENTACAM VERSUS	49
	OCT) AMONG NORMAL GROUP	
FIGURE 22	PACHYMETRIC MAP OF PENTACAM AND AS OCT FOR	50
	THE SAME PATIENT WITH NORMAL CORNEA	
FIGURE 23	CCT DIFFERENCE AMONG NORMAL GROUP	52

FIGURE 24	CORRELATION BETWEEN CCT DIFFERENCE (OCT-US)	53
F	AND US READING AMONG NORMAL GROUP	50
FIGURE 25	CORRELATION BETWEEN CCT DIFFERENCE (OCT-	53
	PENTACAM) AND PENTACAM READING AMONG	
	NORMAL GROUP	
FIGURE 26	BLAND ALTMAN PLOT FOR CCT (US VERSUS	55
	PENTACAM) AMONG KC GROUP.	
FIGURE 27	BLAND ALTMAN PLOT FOR CCT (US VERSUS OCT)	55
	AMONG KC GROUP	
FIGURE 28	BLAND ALTMAN PLOT FOR CCT (PENTACAM VERSUS	56
	OCT) AMONG KC GROUP	
FIGURE 29	CCT DIFFERENCE AMONG KC GROUP	58
FIGURE 30	BLAND ALTMAN PLOT FOR CCT (US VERSUS	60
	PENTACAM) AMONG SCAR GROUP	
FIGURE 31	BLAND ALTMAN PLOT FOR CCT (US VERSUS OCT)	61
	AMONG SCAR GROUP	
FIGURE 32	BLAND ALTMAN PLOT FOR CCT (PENTACAM VERSUS	61
	OCT) AMONG SCAR GROUP	
FIGURE 33	CCT DIFFERENCE AMONG SCAR GROUP	63
FIGURE 34	CORRELATION BETWEEN CCT DIFFERENCE	64
	(PENTACAM-US) AND PENTACAM READING AMONG	
	SCAR GROUP	
FIGURE 35	CORRELATION BETWEEN CCT DIFFERENCE (OCT-	64
	PENTACAM) AND PENTACAM READING AMONG SCAR	
	GROUP	
FIGURE 36	BLAND ALTMAN PLOT FOR SCAR DEPTH AMONG SCAR	66
	GROUP	
FIGURE 37	SCAR DEPTH FOR PARTIAL THICKNESS SCAR WITH	67
	PENTACAM AND AS OCT IN THE SAME EYE	
FIGURE 38	SCAR DEPTH DIFFERENCE (OCT-PENTACAM) GRADES	68
	AMONG SCAR GROUP	
FIGURE 39	CORRELATION BETWEEN SCAR DEPTH DIFFERENCE	69
	(OCT-PENTACAM) AND PENTACAM READING AMONG	0,
	SCAR GROUP	
FIGURE 40	BLAND ALTMAN PLOT FOR TCT AMONG NORMAL	70
	GROUP	, ,
FIGURE 41	TCT DIFFERENCE (OCT-PENTACAM) GRADES AMONG	71
	NORMAL GROUP	
FIGURE 42	CORRELATION BETWEEN TCT DIFFERENCE (OCT-	72
1100112	PENTACAM) AND PENTACAM READING AMONG	
	TENTION IND TENTION REPORT AMONG	l

	NORMAL GROUP	
FIGURE 43	BLAND ALTMAN PLOT FOR TCT AMONG KC GROUP	73
FIGURE 44	TCT DIFFERENCE (OCT-PENTACAM) GRADES AMONG	74
	KC GROUP	
FIGURE 45	CORRELATION BETWEEN TCT DIFFERENCE (OCT-	75
	PENTACAM) AND PENTACAM READING AMONG KC	
	GROUP	
FIGURE 46	BLAND ALTMAN PLOT FOR TCT AMONG SCAR GROUP	76
FIGURE 47	TCT DIFFERENCE (OCT-PENTACAM) GRADES AMONG	77
	SCAR GROUP	
FIGURE 48	CORRELATION BETWEEN TCT DIFFERENCE (OCT-	78
	PENTACAM) AND PENTACAM READING AMONG SCAR	
	GROUP	
FIGURE 49	BLAND ALTMAN PLOT FOR TL DISTANCE AMONG	79
	NORMAL GROUP	
FIGURE 50	TL DISTANCE DIFFERENCE (OCT-PENTACAM) GRADES	80
	AMONG NORMAL GROUP	
FIGURE 51	CORRELATION BETWEEN TL DISTANCE DIFFERENCE	81
	(OCT-PENTACAM) AND PENTACAM READING AMONG	
	NORMAL GROUP	
FIGURE 52	BLAND ALTMAN PLOT FOR TL DISTANCE AMONG KC	82
- F	GROUP	0.2
FIGURE 53	TL DISTANCE DIFFERENCE (OCT-PENTACAM) GRADES	83
T 54	AMONG KC GROUP	0.4
FIGURE 54	CORRELATION BETWEEN TL DISTANCE DIFFERENCE	84
	(OCT-PENTACAM) AND PENTACAM READING AMONG	
FIGURE 55	KC GROUP	85
FIGURE 33	BLAND ALTMAN PLOT FOR TL DISTANCE AMONG SCAR GROUP	83
FIGURE 56	TL DIFFERENCE (OCT-PENTACAM) GRADES AMONG	86
1 IGURE 30	SCAR GROUP	80
FIGURE 57	CORRELATION BETWEEN TL DISTANCE DIFFERENCE	87
I IGURE 37	(OCT-PENTACAM) AND PENTACAM READING AMONG	07
	SCAR GROUP	
FIGURE 58	SCHEIMPFLUG IMAGE AND OCT FOR THE SAME PATIENT	96
	WITH DENSE CORNEAL OPACITY	
FIGURE 59	IRREGULAR CORNEA WITH FULL THICKNESS SCAR	99
FIGURE 60	PACHYMETRIC MAP OBTAINED WITH PENTACAM AND	100
	FAILED WITH AS OCT FOR THE SAME EYE IN FIGURE 57	
ı	1	

LIST OF ABBEREVIATIONS

ACA: anterior chamber angle

AS: anterior segment

AS OCT: anterior segment OCT

BFS: best fit sphere

CCD: charge coupled device

CCT: central corneal thickness

CT: corneal thickness

CXL: collagen cross linking

ECM: extra cellular matrix

Intacs: intracorneal ring segments

KC: keratoconus

LASIK: laser assisted in situ keratomileusis

LED: light emitted diode

LOX: lysyloxidase

MD: mean difference

MMP: matrix metalloproteinases

OCT: optical coherence tomography

PPI: pachymetric progression index

PRK: photorefractive keratectomy

SD: stander deviation

SD OCT: spectral domain OCT

SNR: signal to noise ratio

SOD: superoxidedismutase

SS OCT: swept source OCT

TCT: thinnest corneal thickness

TD OCT: time domain OCT

TL: thinnest location

TMS: topographic modeling system

UBM: ultrasound biomicroscopy

UHR OCT: ultra-high resolution OCT

US: ultrasound

USP: ultrasound pachymetry

UV: ultraviolet

ABSTRACT

Background: Accurate measurement of corneal thickness (CT) is highly important in decision making and planning for refractive surgery. It is also important in diagnosis of keratoconus, measuring intraocular pressure and monitoring corneal edema. Different methods are available for CT measurement including optical and ultrasound based techniques. **Aim of the Study:** was to assess the diagnostic accuracy of optical (AS OCT and Pentacam) and ultrasound imaging

optical (AS OCT and Pentacam) and ultrasound imaging systems (ultrasound pachymetry) in measuring corneal thickness in healthy and diseased corneas.

Materials and Methodology: Three groups were included: 20 healthy corneas, 20 eyes with keratoconus (KC) and 20 eyes with corneal scars. In all cases central corneal thickness (CCT) was measured using ultrasound pachymetry (USP), Pentacam and anterior segment optical coherence tomography (AS OCT).

Results: In normal corneas the mean difference (MD) between USP and Pentacam, USP and OCT & Pentacam and OCT was (-1.3±9.4, 0.4±10.4 &1.7±10.7μm) which is statistically insignificant between the 3 pairs with coefficient of determination 1 between the 3 pairs. In KC group the mean difference (MD) between USP and Pentacam (-7.7±15.1 μm) was statistically significant while the MD between USP and OCT & Pentacam and OCT (4.7±15.7 and 12.3±14.1 μm) was not statistically significant. In scar group the MD between the 3 pairs (-1.1±79.1, -13.6±20.8 &-12.5±73.0) with statistically significant difference between USP and OCT. Coefficient of determination was found 0.9.

Conclusion: USP, AS OCT and Pentacam have high agreement regarding CCT measurement in normal corneas. However, when we studied KC and scarred corneas we found that OCT measurements are higher than those of Pentacam in most of the cases regarding CCT.

Keywords: CCT, Pentacam, AS OCT.

Introduction

The measurement of corneal thickness (CT) is highly important in decision making and planning for refractive surgery, in diagnosis of keratoconus (KC), measuring intraocular pressure (IOP), and monitoring corneal edema. (1)

For these reasons, anterior segment (AS) imaging became a rapidly advancing field. New modalities such as rotating Scheimpflug imaging, based on the principle introduced by Theodor Scheimpflug, and anterior segment optical coherence tomography (AS OCT) are now used to replace or supplement the previously established methods such as Orbscan scanning slit tomography (Bausch & Lomb, Inc., Rochester, NY) and ultrasound biomicroscopy (UBM). (2,3)

The traditional method, ultrasound pachymetry (USP), was considered as the standard method due to its reliability, ease of use and low cost in comparison to recent modalities. However, recent modalities offer pachymetric mapping which was not available with USP and is of a great importance in refractive surgery and corneal ectasia. (1)

Anatomy of the cornea

Cornea is the primary structural barrier of the eye. It acts as the anterior refractive surface through being transparent avascular connective tissue. Its clarity is maintained through many structural and physiological factors. (4)

In adults the average horizontal corneal diameter is 11.5 to 12 mm which is about 1 mm larger than the vertical diameter. Regarding the thickness, it is about 0.5 mm at the center which increase gradually toward the periphery. (5)

Microscopically the cornea consists of five layers (figure 1) which are epithelium, Bowman's layer, stroma, Descemet membrane, and endothelium. (4) In 2013, a sixth layer, Dua's layer, was described in between the stroma and Descemet membrane. (6)

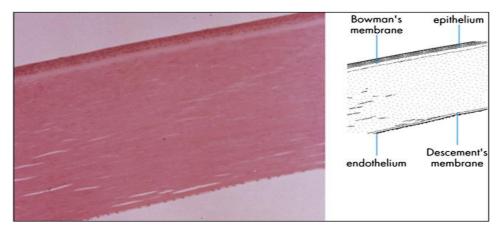


Figure 1 Light microscopic picture of normal cornea (7)

Review of literature

Epithelium

Corneal epithelium is a uniform stratified non-keratinized squamous epithelium acting as the first barrier against the external environment and as an integral part of tear film-cornea interface that is critical to the refractive power of the eye. Epithelium is composed of five to six layers resting on epithelial basement membrane of 0.5 μ m thickness. Corneal epithelial thickness is not homogeneous and tends to alter to compensate for irregular corneal stromal surface. The mean epithelial thickness at the corneal vertex is 53.4 \pm 4.6 μ m. $^{(8,4,9)}$

The most superficial cells are two to three layers of flat polygonal cells with extensive apical microvilli covered by a glycocalyceal layer. The superficial cells are connected by tight junctional complexes which prevent tear film from intercellular entering spaces and prevent toxins and microorganisms from penetrating deep layers. Deep to the superficial cells are two to three layers of wing cells which are less flat than the superficial cells but with similar tight lateral junctions. Deeply there is a single layer of columnar epithelium about 20 µm long which is called the basal layer attached to the underlying basement membrane by hemidesmosomes. (4,7)