

# Ain Shams University Faculty of Engineering Department of Structural Engineering

## Nonlinear analysis of shear wall converted to braced frame under earthquake loading

A Thesis Submitted in partial fulfillment for the requirements of
The degree of
Master of Science in Civil Engineering

By

## Ayman Osama Abd El Khalek B.Sc. (2012)

Graduate Student, Structural Engineering Department
Ain Shams University

Supervised by

#### Dr. Gamal Hussein Mahmoud

Associate Professor Structural Engineering Department Ain Shams University

#### **Dr. Amgad Ahmed Talaat**

Assistant Professor Structural Engineering Department Ain Shams University

#### Dr. Nasr Eid Nasr

Assistant Professor Structural Engineering Department Ain Shams University

Cairo 2018

## **EXAMINERS COMMITTEE**

| 1- <b>Prof. Dr. Mohamed M. Hussien Attabi</b> Professor in Structural Engineering Department Faculty of Engineering Ain Shams University | () |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2- <b>Prof. Dr. Hala Mohamed El Kadi</b><br>Professor at National Research Center                                                        | () |
| 3- <b>Dr. Gamal Hussien Mahmoud</b> Associate Professor in Structural Engineering Faculty of Engineering Ain Shams University            | () |

### Information about the Researcher

Name : Ayman Osama Abd El Khalek

**Date of Birth** : 23/3/1990

**Place of Birth** : Cairo – Egypt

Qualification : B.Sc. (Civil Engineering), Faculty of

Engineering, Ain Shams University, Cairo,

Egypt, June 2012

**STATEMENT** 

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the

Department of structural engineering, Faculty of engineer, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other

university or institution.

Date : / /

Signature:

Name : Ayman Osama Abd El Kalek

i

#### ACKNOWLEDGMENT

First of all, thanks god to finish this research and I would like to thanks everyone who helps me. Many thanks for **Dr. Gamal Hussein,** Professor of theory of structures, Faculty of Engineering, Ain Shams University, for his great supervision, planning for this wok.

I am deeply indebted to **Dr. Nasr Eid,** Assistant Professor of theory of structures, Faculty of Engineering, Ain Shams University, for his kind supervision, support, guidance, help, encouragement and useful suggestions since the start of the wok.

I wish to extend my thanks to my family specially to my mother who always encourage me and direct me to the best way in my life Also, my wife who encourage me and care about me during work.

Finally, appreciation and deep gratitude to my brother, for his support and encouragement.

**ABSTRACT** 

The objective of this research work is to study the shear wall converted to steel braced

frame under seismic loads. The behavior of shear walls and braced frames was

analyzed using nonlinear static analysis by nonlinear finite element analysis. A

parametric study was performed to assess the effect of building height, location of the

system, amount of reinforcement, and the fundamental time of the structure on the

structural elements capacity.

Shear walls converted to braced frame in top stories were studied by nonlinear static

analysis, which uses displacement based design method which depends on element

nonlinear behavior to calculate the effective stress and strain which effect on total

displacement of the building. The results are presented and show that shear walls can

be replaced with braced frame until reaching the buckling load for the steel member.

A comparison is created for story drift values with various structural codes.

Key Words: Pushover analysis; Nonlinear static analysis; Shear walls; Earthquake

loading; Capacity curve; Braced frame; Base shear; Displacement.

iii

## TABLE OF CONTENTS

| Statement                                                                                                 | i          |
|-----------------------------------------------------------------------------------------------------------|------------|
| Acknowledgement                                                                                           | ii         |
| Abstract                                                                                                  | ii         |
| Table of contents                                                                                         | iv         |
| List of figures                                                                                           | V          |
| List of tables                                                                                            | XV         |
| Chapter (1): INTRODUCTION                                                                                 | 1          |
| 1.1 General                                                                                               | 1          |
| 1.2 Objective of the work                                                                                 | 1          |
| 1.3 Outline of the thesis                                                                                 | 3          |
| Chapter (2): Literature review                                                                            | 4          |
| 2.1 Introduction                                                                                          | :          |
| 2.2 Braced frame system                                                                                   | :          |
| 2.2.1 Nonlinear analysis                                                                                  |            |
| 2.2.2 Linear analysis                                                                                     | 2          |
| 2.3 Shear wall system                                                                                     | 4          |
| 2.3.1 Modeling of shear wall                                                                              | 4          |
| 2.3.2 Pushover analysis for shear wall                                                                    | 4          |
| 2.4 Summary                                                                                               | 5          |
| Chapter (3): Methodology                                                                                  | 6          |
| 3.1 Introduction                                                                                          | $\epsilon$ |
| 3.2 Pushover static load                                                                                  | 6          |
| 3.3 Hysteresis Models                                                                                     | 6          |
| 3.4 Hinge length                                                                                          | 6          |
| 3.5 Fiber P-M2-M3 hinge                                                                                   | 6          |
| 3.6 Analysis modeling                                                                                     | $\epsilon$ |
| 3.6.1 Lateral load distribution                                                                           | $\epsilon$ |
| 3.7 Concrete shear walls                                                                                  | 6          |
| 3.8 Steel braced frames                                                                                   | 6          |
| 3.9 P-delta effect                                                                                        | 6          |
| 3.10 Steps of nonlinear analysis for shear wall converted to braced frame using pushover static procedure | $\epsilon$ |
| Chapter (4): Verification of pushover analysis method                                                     | 7          |
| 4.1 Structural system model                                                                               | 7          |
| 4.2 Load criteria                                                                                         | 7          |
| 4.3 Analytical results                                                                                    | 7          |

| 5.1 Structural model.       77         5.2 Analysis method.       78         5.3 Results to get demand / capacity ratio.       81         Chapter (6): Parametric study       83         6.1 Description of parameters       83         6.2 Analytical results       86         6.2 Discussion of results       161         Chapter (7): Conclusions and future work       163         7.1 Conclusions       163         7.2 Design recommendations       164         7.3 Suggested researches for future work       164         References       165 | Chapter (5): Analytical modeling using ETABS | 77  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
| 5.3 Results to get demand / capacity ratio.       81         Chapter (6): Parametric study.       83         6.1 Description of parameters.       83         6.2 Analytical results.       86         6.2 Discussion of results.       161         Chapter (7): Conclusions and future work.       163         7.1 Conclusions.       163         7.2 Design recommendations.       164         7.3 Suggested researches for future work.       164                                                                                                   | 5.1 Structural model                         | 77  |
| Chapter (6): Parametric study       83         6.1 Description of parameters       83         6.2 Analytical results       86         6.2 Discussion of results       161         Chapter (7): Conclusions and future work       163         7.1 Conclusions       163         7.2 Design recommendations       164         7.3 Suggested researches for future work       164                                                                                                                                                                        | 5.2 Analysis method                          | 78  |
| 6.1 Description of parameters836.2 Analytical results866.2 Discussion of results161Chapter (7): Conclusions and future work1637.1 Conclusions1637.2 Design recommendations1647.3 Suggested researches for future work164                                                                                                                                                                                                                                                                                                                              | 5.3 Results to get demand / capacity ratio   | 81  |
| 6.2 Analytical results 86 6.2 Discussion of results 161  Chapter (7): Conclusions and future work 163 7.1 Conclusions 163 7.2 Design recommendations 164 7.3 Suggested researches for future work 164                                                                                                                                                                                                                                                                                                                                                 | Chapter (6): Parametric study                | 83  |
| 6.2 Discussion of results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1 Description of parameters                | 83  |
| Chapter (7): Conclusions and future work.1637.1 Conclusions1637.2 Design recommendations1647.3 Suggested researches for future work164                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2 Analytical results                       | 86  |
| 7.1 Conclusions1637.2 Design recommendations1647.3 Suggested researches for future work164                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2 Discussion of results                    | 161 |
| 7.2 Design recommendations.1647.3 Suggested researches for future work.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chapter (7): Conclusions and future work     | 163 |
| 7.3 Suggested researches for future work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1 Conclusions                              | 163 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2 Design recommendations                   | 164 |
| References 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.3 Suggested researches for future work     | 164 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | References                                   | 165 |

## LIST OF FIGURES

| Figure (1-1): Types of bracing and facilities needed through it               | 2         |
|-------------------------------------------------------------------------------|-----------|
| Figure (1-2): Opening in concrete shear wall and the solution                 | 3         |
| Figure (2-1): Lateral load resisting system                                   | 5         |
| Figure (2-2): The loading considered for the two model systems                | 6         |
| Figure (2-3): Detailing of the moment RC frame (F1) and the braced RC fram    | nes (FX1  |
| and FX2)                                                                      | 6         |
| Figure (2-4): Test setup and measurement Instrumentations                     | 7         |
| Figure (2-5): Lateral load-drift hysteresis of frame F1                       | 8         |
| Figure (2-6): Braced frame FX1 after the test                                 | 8         |
| Figure (2-7): Lateral load-drift hysteresis of frame FX1                      | 9         |
| Figure (2-8): Lateral load-drift hysteresis of frame FX2                      | 9         |
| Figure (2-9): Degradation of the lateral stiffness of test frames             | 10        |
| Figure (2-10): Variation of energy dissipation with the applied displacement. | 10        |
| Figure (2-11): Comparison between the numerical lateral load-drift pushove    | er curves |
| of the moment frame, $F1$ , the braced RC frame, $FX1$                        | 11        |
| Figure (2-12): Comparison between the numerical lateral load-drift pushove    | er curves |
| of the moment frame, F1, the braced RC frame, FX2                             | 11        |
| Figure (2-13): Structural models                                              | 12        |
| Figure (2-14): Reinforcement details.                                         | 12        |
| Figure (2-15): Bracing models.                                                | 12        |
| Figure (2-16): Pushover curve for Tube 140 (6 stories)                        | 13        |
| Figure (2-17): Pushover curve for Tube 140 (3 stories)                        | 13        |
| Figure (2-18) Pushover curve for Tube 180 (6 stories)                         | 13        |
| Figure (2-19): Pushover curve for Tube 180 (3 stories)                        | 13        |
| Figure (2-20): Pushover curve for Tube 240 (6 stories)                        | 13        |
| Figure (2-21): Pushover curve for Tube 240 (3 stories)                        | 13        |
| Figure (2-22): Lateral drift for Tube 180 (3 stories)                         | 14        |
| Figure (2-23): Lateral drift for Tube 180 (6 stories)                         | 14        |
| Figure (2-24): Ductility and different types of Tube sections                 | 14        |
| Figure (2-25): Influence of Tube sections                                     | 15        |
| Figure (2-26): Influence of HEA sections                                      | 15        |
| Figure (2-27): Influence of IPE sections.                                     | 16        |

| Figure (2-28): Bare frame details (F1)                                           |
|----------------------------------------------------------------------------------|
| Figure (2-29): Steel braced frame details (F3)                                   |
| Figure (2-30) : Test setup                                                       |
| Figure (2-31): Mode of failure of (F1)                                           |
| Figure (2-32): Mode of failure of (F3)                                           |
| Figure (2-33): Load-displacement hysteresis curve of specimen F1 (bare frame)    |
| and F3 (steel braced frame)19                                                    |
| Figure (2-34): Determination of yield and failure displacement20                 |
| Figure (2-35): Stiffness degradation of the tested specimen21                    |
| Figure (2-36): Building Plan                                                     |
| Figure (2-37): Building elevation                                                |
| Figure (2-38): Elevation of cross braced structure                               |
| Figure (2-39): Elevation of Chevron braced structure                             |
| Figure (2-40) : Elevation of Diagonal braced structure                           |
| Figure (2-41) : Elevation of K-braced structure                                  |
| Figure (2-42): Plan representing the position of bracing                         |
| Figure (2-43): 3D model of X-braced sample frame, A; 3x1 braced, B: corner       |
| braced                                                                           |
| Figure (2-44): Max. Lateral displacement of (4 story 3x1 braced)33               |
| Figure (2-45): Max. Lateral displacement of (4 story) corner braced              |
| Figure (2-46): Max. Lateral displacement of only braced frame of (4story) corner |
| braced                                                                           |
| Figure (2-47): Story drift for (4 story) in Y-direction                          |
| Figure (2-48): Max. Lateral Displacements of (6story) 3x1 braced35               |
| Figure (2-49): Max. Lateral Displacements of (6story) corner braced35            |
| Figure (2-50): Max. Lateral Displacements of braced frame of (6story) corner     |
| braced                                                                           |
| Figure (2-51): Story drift of (6story)                                           |
| Figure (2-52): lateral displacement graph of (9story) 3x1 braced                 |
| Figure (2-53): Graph of lateral displacement of (9story) corner braced37         |
| Figure (2-54): graph of lateral displacement of braced frame for(9story) corner  |
| braced                                                                           |
| Figure (2-55): Story drift graph of (9story)                                     |
| Figure (2-56): Lateral displacement of (13story) (3x1braced)                     |

| Figure (2-57): Lateral displacement of (13story) (corner braced)                  | 39 |
|-----------------------------------------------------------------------------------|----|
| Figure (2-58) Lateral displacement of braced frame for (13story) (corner braced). | 40 |
| Figure (2-59) Story drift of (13story)                                            | 40 |
| Figure (2-60): Different finite elements models for shear wall                    | 41 |
| Figure (2-61) Multi-layer shell element model                                     | 42 |
| Figure (2-62): P-M-M curves.                                                      | 42 |
| Figure (2-63): Shear wall modeling as multilayer shell and mid pier frame         | 42 |
| Figure (2-64): Reinforcement distribution for shear wall and column               | 43 |
| Figure (2-65) Deformation for multi-layer shell and mid pier frame element        | 43 |
| Figure (2-66) Number of plastic hinges for different 3 stories                    | 44 |
| Figure (2-70): Pushover curves for 3 stories.                                     | 44 |
| Figure (2-71) Pushover curves for 5 stories.                                      | 45 |
| Figure (2-72) Pushover curves for 7 stories.                                      | 45 |
| Figure (2-73): Drift values for 3 stories.                                        | 46 |
| Figure (2-74) : Drift values for 5 stories.                                       | 46 |
| Figure (2-75): Drift values for 7 stories.                                        | 47 |
| Figure (2-76): Building plan with shear wall location.                            | 47 |
| Figure (2-77): Directions of pushover load cases.                                 | 48 |
| Figure (2-78): Building model.                                                    | 48 |
| Figure (2-79) : Design response spectrum.                                         | 49 |
| Figure (2-80): Modeling of shear wall.                                            | 49 |
| Figure (2-81): Pushover analysis curve with performance point location            | 50 |
| Figure (2-82): Model configurations for boundary element study                    | 51 |
| Figure (2-83): Model configurations for opening study                             | 51 |
| Figure (2-84): Model configurations for slenderness study                         | 52 |
| Figure (2-85): Pushover curves for boundary element models                        | 53 |
| Figure (2-86): Pushover curves for opening models with boundary elements          | 53 |
| Figure (2-87): Pushover curves for opening models without boundary elements       | 54 |
| Figure (2-88): Pushover curves for slenderness models                             | 54 |
| Figure (2-89): Model one frame system without shear wall                          | 55 |
| Figure (2-90): Frame system without shear wall at position 1                      | 55 |
| Figure (2-91): Frame system without shear wall at position 2                      | 55 |
| Figure (2-92): Frame system without shear wall at position 3                      | 55 |
| Figure (2-93): Displacement values for model 1                                    | 56 |

| Figure (2-94): Displacement values for model 25                               |
|-------------------------------------------------------------------------------|
| Figure (2-95): Displacement values for model 357                              |
| Figure (2-96) Displacement values for model 4                                 |
| Figure (3-1): Idealized properties for analysis models                        |
| Figure (3-2): Hysteretic force-deformation behavior from tests                |
| Figure (3-3): Backbone representation of hysteretic behavior                  |
| Figure (3-4): Idealized properties for analysis models                        |
| Figure (3-5): Fiber discretization in a reinforced concrete section63         |
| Figure (3-6): Vertical distribution of applied base shear                     |
| Figure (3-7): Plastic Hinge Rotation in Shear Wall where Flexure Dominate     |
| Inelastic Response                                                            |
| Figure (3-8): Story Drift in Shear Wall where Shear Dominates Inelastic       |
| Response                                                                      |
| Figure (3-9): Concentrically braced frame67                                   |
| Figure (3-10): P-delta about column                                           |
| Figure (3-11): Response of structural building under earthquake loading       |
| with and without P-delta effects69                                            |
| Figure (3-12): Steps for pushover procedure in ETABS program71                |
| Figure (4-1): Lateral load resisting system                                   |
| Figure (4-2): The loading considered for the model system                     |
| Figure (4-3): Detailing of the braced RC frames                               |
| Figure (4-4): Schematic of the test setup and measurement instrumentation74   |
| Figure (4-5): Gravity load assigned to the system                             |
| Figure (4-6): Earthquake loading applied by pushover analysis                 |
| Figure (4-7): Pushover curve with dropped load for braced frame system due to |
| buckling of steel bracing                                                     |
| Figure (5-1): Building Plan                                                   |
| Figure (5-2) : ETABS 3D model structure                                       |
| Figure (5-3) : Stress-strain curve for reinforced concrete material           |
| Figure (5-4) : Stress-strain curve for steel reinforcement material80         |
| Figure (5-5) : Stress-strain curve for steel section material                 |
| Figure (5-6) : Base Shear-Displacement curve in X-direction82                 |
| Figure (5-7) : Base Shear-Displacement curve in Y-direction82                 |
| Figure (6-1) : General structural plan83                                      |

| Figure (6-2)  | : Structural plan with Eccentricity in Y-direction              | 83    |
|---------------|-----------------------------------------------------------------|-------|
| Figure (6-3)  | : Structural plan with Eccentricity in X-direction              | 83    |
| Figure (6-4)  | : Structural elements of RC shear wall converted to steel brace | ed RC |
| frame         |                                                                 | 84    |
| Figure (6-5)  | : Base Shear-Displacement curve for Model 1                     | 88    |
| Figure (6-6)  | : Base Shear-Displacement curve for Model 2                     | 88    |
| Figure (6-7)  | : Base Shear-Displacement curve for Model 3                     | 89    |
| Figure (6-8)  | : Base Shear-Displacement curve for Model 4                     | 89    |
| Figure (6-9)  | : Base Shear-Displacement curve for Model 5                     | 90    |
| Figure (6-10) | : Base Shear-Displacement curve for Model 6                     | 90    |
| Figure (6-11) | : Base Shear-Displacement curve for Model 7                     | 91    |
| Figure (6-12) | : Base Shear-Displacement curve for Model 8                     | 91    |
| Figure (6-13) | : Base Shear-Displacement curve for Model 9                     | 92    |
| Figure (6-14) | : Base Shear-Displacement curve for Model 10                    | 92    |
| Figure (6-15) | : Base Shear-Displacement curve for Model 11                    | 93    |
| Figure (6-16) | : Base Shear-Displacement curve for Model 12                    | 93    |
| Figure (6-17) | : Base Shear-Displacement curve for Model 13                    | 94    |
| Figure (6-18) | : Base Shear-Displacement curve for Model 14                    | 94    |
| Figure (6-19) | : Base Shear-Displacement curve for Model 15                    | 95    |
| Figure (6-20) | : Base Shear-Displacement curve for Model 16                    | 95    |
| Figure (6-21) | : Base Shear-Displacement curve for Model 17                    | 96    |
| Figure (6-22) | : Base Shear-Displacement curve for Model 18                    | 96    |
| Figure (6-23) | : Base Shear-Displacement curve for Model 19                    | 97    |
| Figure (6-24) | : Base Shear-Displacement curve for Model 20                    | 97    |
| Figure (6-25) | : Base Shear-Displacement curve for Model 21                    | 98    |
| Figure (6-26) | : Base Shear-Displacement curve for Model 22                    | 98    |
| Figure (6-27) | : Base Shear-Displacement curve for Model 23                    | 99    |
| Figure (6-28) | : Base Shear-Displacement curve for Model 24                    | 99    |
| Figure (6-29) | : Base Shear-Displacement curve for Model 25                    | 100   |
| Figure (6-30) | : Base Shear-Displacement curve for Model 26                    | 100   |
| Figure (6-31) | : Base Shear-Displacement curve for Model 27                    | 101   |
| Figure (6-32) | : Base Shear-Displacement curve for Model 28                    | 101   |
| Figure (6-33) | : Base Shear-Displacement curve for Model 29                    | 102   |
| Figure (6-34) | : Base Shear-Displacement curve for Model 30                    | 102   |

| Figure (6-35) : Base Shear-Displacement curve for Model 31                             |
|----------------------------------------------------------------------------------------|
| Figure (6-36) : Base Shear-Displacement curve for Model 32                             |
| Figure (6-37) : Base Shear-Displacement curve for Model 33                             |
| Figure (6-38) : Base Shear-Displacement curve for Model 34                             |
| Figure (6-39) : Base Shear-Displacement curve for Model 35                             |
| Figure (6-40) : Base Shear-Displacement curve for Model 36                             |
| Figure (6-41) : Base Shear-Displacement curve for Model 37                             |
| Figure (6-42) : Base Shear-Displacement curve for Model 38                             |
| Figure (6-43) : Base Shear-Displacement curve for Model 39                             |
| Figure (6-44) : Base Shear-Displacement curve for Model 40                             |
| Figure (6-45) : Base Shear-Displacement curve for Model 41                             |
| Figure (6-46) : Base Shear-Displacement curve for Model 42                             |
| Figure (6-47) : Base Shear-Displacement curve for Model 43                             |
| Figure (6-48) : Base Shear-Displacement curve for Model 44                             |
| Figure (6-49) : Base Shear-Displacement curve for Model 45                             |
| Figure (6-50) : Base Shear-Displacement curve for Model 46                             |
| Figure (6-51) : Base Shear-Displacement curve for Model 47                             |
| Figure (6-52) : Base Shear-Displacement curve for Model 48                             |
| Figure (6-53) : Relation between stress ratio and percentage of braced frame height    |
| to total building height for 10 stories in X-direction                                 |
| Figure (54-6): Relation between stress ratio and percentage of braced frame height to  |
| total building height for 15 stories in X-direction                                    |
| Figure (55-6): Relation between stress ratio and percentage of braced frame height to  |
| total building height for 20 stories in X-direction                                    |
| Figure (56-6): Relation between stress ratio and percentage of braced frame height     |
| to total building height for 25 stories in X-direction                                 |
| Figure (57-6): Relation between stress ratio and percentage of braced frame height to  |
| total building height for 30 stories in X-direction                                    |
| Figure (58-6): Relation between stiffness and story level for buildings (10, 15, 20,25 |
| & 30) in X -direction                                                                  |
| Figure (6-59): Relation between Time period and percentage of braced frame height      |
| to total building height for (10 stories in X-direction)                               |
| Figure (6-60) : Relation between Time period and percentage of braced frame height     |
| to total building height for (15 stories in X-direction)                               |

| Figure (61-6): Relation between Time period and percentage of braced frame height   |
|-------------------------------------------------------------------------------------|
| to total building height for (20 stories in X-direction)                            |
| Figure (62-6): Relation between Time period and percentage of braced frame height   |
| to total building height for (25 stories in X-direction)                            |
| Figure (63-6): Relation between Time period and percentage of braced frame height   |
| to total building height for (30 stories in X-direction)                            |
| Figure (64-6): Relation between number of braced frame stories from top and Drift   |
| value in X direction                                                                |
| Figure (65-6): Relation between Thickness and stress ratio of the building elements |
| for 20 stories with one braced frame in X direction                                 |
| Figure (66-6): Relation between Thickness and stress ratio of the building elements |
| for 20 stories with two braced frame in X direction                                 |
| Figure (67-6): Relation between Thickness and stress ratio of the building elements |
| for 20 stories with three braced frame in X direction120                            |
| Figure (68-6): Relation between Thickness and stress ratio of the building elements |
| for 20 stories with four braced frame in X direction                                |
| Figure (69-6): Relation between Thickness of shear wall and Drift value for 20      |
| stories in X direction                                                              |
| Figure (70-6): Relation between Thickness of shear wall and Drift value for 20      |
| stories in X direction                                                              |
| Figure (71-6): Relation between Thickness of shear wall and Drift value for 20      |
| stories in X direction                                                              |
| Figure (6-72): Building plan for 20 stories with eccentricity in Y direction123     |
| Figure (6-74): Base Shear-Displacement curve for Model 1                            |
| Figure (6-75) : Base Shear-Displacement curve for Model 2                           |
| Figure (6-76) : Base Shear-Displacement curve for Model 3                           |
| Figure (6-77): Base Shear-Displacement curve for Model 4                            |
| Figure (6-78): Base Shear-Displacement curve for Model 5                            |
| Figure (6-79): Base Shear-Displacement curve for Model 6                            |
| Figure (6-80) : Base Shear-Displacement curve for Model 7                           |
| Figure (6-81): Base Shear-Displacement curve for Model 8                            |
| Figure (6-82): Base Shear-Displacement curve for Model 9                            |
| Figure (6-83): Base Shear-Displacement curve for Model 10                           |
| Figure (6-84) · Base Shear-Displacement curve for Model 11                          |