

A study of Interleukin 6 as a predictive biomarker for development of Nonalcholic steatohepatitis in patients with Nonalcholic fatty liver disease

Thesis

Submitted for partial fulfillment of Master Degree
Of Internal Medicine

By

Maha Aboulfotouh Sayed

M.B.B.C.H Faculty of Medicine Ain shams University

Under Supervision of Prof.Dr. khaled Abdel Hamed Mohamed

Professor of internal medicine, Gastroenterology and Hepatology Faculty of Medicine Ain shams University

Asst.prof.Dr. Enas El Khadr Mohamed

Assistant Professor of internal medicine, Gastroenterology and Hepatology
Faculty of Medicine Ain shams University.

Dr. Dina Morsy Ahmed

Lecturer of internal medicine, Gastroenterology and Hepatology.

Faculty of Medicine Ain shams University.

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

First and foremost, all thanks and gratitude to *Allah*, the Most Merciful, who gives us the power to accomplish this work.

I would like to express my deepest gratitude and cordial appreciation to *Prof.Dr. khaled Abdel Hamed Mohamed*; Professor of Gastroenterology and Hepatology Faculty of Medicine Ain shams University, for his expert advices and meticulous guidance and support throughout this work.

I feel deeply indebted to *Asst.prof.Dr. Enas El Khadr Mohamed*; Assistant Professor of Gastroenterology and Hepatology, Faculty of Medicine Ain shams University, who gave me much of the efforts, time, experience and close supervision throughout the work. They provided me with continuous encouragement and assistance throughout this work.

I'm also deeply grateful for *all patients* included in this study for being cooperative.

Maha Aboulfotouh Sayed

LIST OF CONTENTS

Title	Page No.
List of Contents	1
List of Abbreviations	II
List of Tables	V
List of Figures	VI
Introduction	1
Aim of the Work	6
Review of Literature	7
> Nonalcholic fatty liver disease	7
> Interleukin-6	66
Patients and Methods	76
RESULTS	81
DISCUSSION	. 111
Conclusion and Recommendations	. 117
Summary	. 119
References	. 122
الملخص العربي	1

LIST OF ABBREVIATIONS

Full Term Abb. ALP Alkaline phosphatase **AST** to Platelet Ratio Index **ASAP** Aspartate aminotransferase **AST ATGL** Adipocyte triclyceride lipase Adenosine triphosphate **ATP AUROC** The Area Under an ROC Curve **BCAA** Branched chain amino acids **BDNF** brain-derived neurotrophic factor **BMI** Body mass index Calcium Ca2+ Complete blood count **CBC** CD Cluster of Differentiation **CHF** Congestive heart failure **CHOL** Cholesterol Cytoke ratin-18 **CK-18** cardiotrophin-like cytokine **CLC CNTF** ciliary neurotrophic factor **CRP** C-reactive protein **CT** Computed Tomography CT-1 cardiotrophin-1 **CYP 2E1** Cytochrome P-450 2E1 DNA methyltransferase-1 DNMT1 Doppler perfusion index DPI **ELF Enhanced Liver Fibrosis** ELISA Enzyme linked immunosorbent assays **European Medicines Agency EMA EV71** Enterovirus 71 **FBS** Fasting blood sugar **FFAs** Free fatty acids Familial hypercholesterolaemia FH **GGT** Gamma-glutamyl transferase **Gp130** Glycoprotein130 **GSH-PX** Glutathione peroxidase Hemoglobin Hb

LIST OF ABBREVIATIONS

Abb. **Full Term** HbA1C Hemoglobin A1C (Glycated Hb) **HBsAg** Hepatitis B surface antigen Hepatocellular carcinoma HCC **HCV** Hepatitis C virus Histone Deacetylase 1 HDAC1 High-density lipoprotein HDL **HMG CO-A** Hydroxyl-3-methylglutaryl coenzyme A **HTGC** Hepatic triglyceride content Hypertention HTN Hounsfield units Hus IL-1ra IL-1 receptor antagonist IL-6 signal transducer **IL6ST** ILs Interleukins **INR** International normalized ratio Insulin Resistance Atherosclerosis Study **IRAS JAKs** Janus kinases KSHV-IL6 Kaposi's sarcoma-associated herpes virus interleukin 6-like protein Low-density lipoprotein LDL Low-density lipoprotein cholesterol LDL-C LIF leukemia inhibitory factor Lipoprotein lipase LPL LSM Liver stiffness measurement MAPK mitogen-activated protein kinase **MRI** Magnetic Resonance Imaging **MRS** Magnetic Resonance Spectroscopy MS, MetS Metabolic syndrome **NAFL** Non alcoholic fatty liver **NAFLD** Non alcoholic fatty liver disease **NAS** NAFLD Activity Score NASH Non alcoholic steatohepatitis **NFAT** nuclear factor of activated T-cells Nuclear factor-κB NFĸB **NPC** Niemann-Pick type C protein

LIST OF ABBREVIATIONS

Full Term Abb. **OSM** oncostatin M P62 Nucleoporin p62 pathogen-associated molecular patterns **PAMPs** Prostaglandin E **PGE** PI3K Phosphoinositide 3-kinase **PIIINP** Procollagen III N-Terminal Propeptide protein kinase B **PKB** Plt **Platelets** PPAR-y peroxisome proliferator activator receptor gamma **PRRs** pattern recognition receptors PT prothrombin time PTX3 Plasma pentraxin 3 Polyunsaturated fatty acids **PUFA RCT** Randomized control trial Reactive oxygen species ROS The Sibutramine Cardiovascular Outcome **SCOUT** soluble form of IL-6Receptor sIL-6R **SPEA** Serum prolidase enzyme activity Statistical Package for Social Sciences **SPSS STATs** Signal Transducers and Activators of Transcription T II DM Type 2 diabetes mellitus **Transforming Growth Factor** TGF Tissue inhibitor of metalloproteinases **TIMP** Tlc Total leucocytic count **TLRs** Toll-like receptors TNF Tumor necrosis factor TRX Thioredoxin **TZD** Thiazolidinedione U/S Ultrasonography

White adipose tissue

WAT

LIST OF TABLES

Table No.	Title	Page No.
Table (1): Common Causes of Seconda	ry Hepatic Steatosis	8
Table (2): Pisk factors for NAFLD		
Table (3):Histological grading a	and staging of nor	n-alcoholic
steatohepatitis/fibrosis (NA	\SH)	48
Table (4): NAFLD Activity Score (N	AS). Histological scori	ng system
for non-alcoholic fatty live	,	
Table (5): Comparison between groups		
Table (6): Comparison between groups	•	
Table (7): Comparison between groups	•	
Table (8): Comparison between groups	<u> </u>	
Table (9): Comparison between ground		
score		
Table (10): Comparison between group	C	
Table (11): Comparison between group	0 1 1	
Table (12): Relation between NAFL		_
parameters in all patients		
Table (13): Relation between NAFL		_
parameters in group I Table (14): Relation between NAFL	D Eibrosis saora agare	94 ling to all
parameters in group II		
Table (15): Relation between positive		
parameters in all patients		
Table (16): Relation between positive		
parameters in group I		
Table (17): Relation between positive		
parameters in group II		102
Table (18): Correlation between NAFI		
parameters, using Pearson		
Table (19): Correlation between NAFI		
parameters, using Pearson		
II		108
Table (20): Correlation between NAFI	LD fibrosis score and IL	-6 with all
parameters, using Pearson	n Correlation Coefficie	ent in All
patients		109

LIST OF FIGURES

Figure No.	Title	Page No.
Figure (1): Pathogenesis	of NAFLD	15
Figure (3): Mechanistic	pathways leading to disease prog	gression from simple
	onalcoholic steatohepatitis (NA	
<u>.</u>	ited magnetic resonance imagi	•
e e e e e e e e e e e e e e e e e e e	a bright liver. Data adapted from M	
• • •	anced computed tomography scan	
	adapted from Charatcharoenwittha	·
_	asound image of the liver shows d	
	om Yokoo <i>et al</i> [79]	
	Features of simple steatosis (fatty	_
	et al[69]	
	features of nonalcoholic steatohep	
	nto et <i>et al</i> [83]pathophysiologic effects of thera	
	veen groups according to age (year	
	een groups according to sex	
	veen groups according to sexveen groups according to risk factor	
	veen groups according to Plts	
0 1 1	veen groups according to albumin	
<u> </u>	veen groups according to AST and	
<u> </u>	veen groups according to NAFLD f	
0 1 1	tween groups according to level	
Fig. (18): Bar chart betw	veen groups according to IL-6	89
Fig. (19): Bar chart betw	veen groups according to level of II	L-690
	veen groups according to lipid pro-	
Fig. (21): Bar chart bety	veen NAFLD Fibrosis score accor	ding to obesity, DM
0 1 1	veen NAFLD Fibrosis score accord	•
0 1 1	veen NAFLD Fibrosis score accord	•
	veen NAFLD Fibrosis score accord	
	veen NAFLD Fibrosis score accord	
	veen NAFLD Fibrosis score accord	
	ween level of IL-6 positive and no	
BMI, AST and	ALT	99
	ween level of IL-6 positive and no	
	is scoreween positive and negative IL-6	
_	_	_
group 1		101

		1		
ċ	ş		ì	
`	`			,

Fig. (30): Bar chart between positive and negative IL-6 according to AST in	
group I10)3
Fig. (31): Bar chart between positive and negative IL-6 according to AST in	
group I10	13
Fig. (32): Bar chart between positive and negative IL-6 according to LDL in	
group I10)4
Fig. (33): Scatter plot between NAFLD fibrosis score and TG in group I10)6
Fig. (34): Scatter plot between NAFLD fibrosis score and cholesterol in group	
I10	96
Fig. (35): Scatter plot between NAFLD fibrosis score and HDL in group I10	96
Fig. (36): Scatter plot between IL-6 and BMI in group I)7
Fig. (37): Scatter plot between IL-6 and LDL in group II	8
Fig. (38): Scatter plot between IL-6 and BMI in all patients	9
Fig. (39): Scatter plot between IL-6 and AST in all patients11	0
Fig. (40): Scatter plot between IL-6 and ALT in all patients	0

A study of Interleukin 6 as a predictive biomarker for development of nonalcholic steatohepatitis in patients with Nonalcholic fatty liver disease

Thesis

Submitted for partial fulfillment of Master Degree of Internal Medicine.

By

Dr. Maha Aboulfotouh Sayed

M.B.B.C.H Faculty of Medicine Ain shams University.

Under supervision of Prof.Dr. khaled Abdel Hamed Mohamed

Professor of Internal Medicine, Gastroenterology and Hepatology Faculty of Medicine Ain shams University.

Asst.prof.Dr. Enas El Khadr Mohamed

Assistant Professor of Internal Medicine, Gastroenterology and Hepatology

Faculty of Medicine Ain shams University.

Dr. Dina Morsy Ahmed

Lecturer of Internal Medicine, Gastroenterology and Hepatology.

Faculty of Medicine Ain shams University.

Introduction

The spectrum of NAFLD is a continuum ranging from simple steatosis to NASH and finally cirrhosis.

The defining characteristic of the disease is the presence of greater than normal lipid deposition within the liver with the absence of excessive alcohol consumption defined as > 20 g/d for men and 10 g/d for women.

Steatosis is the presence of lipid within the cytoplasm of hepatocytes, the criteria for which is defined in the literature as being either hepatic lipid levels above the 95th percentile for healthy individuals (about >55 mg/g liver) greater than 5% of the liver's weight or found in greater than 5% of hepatocytes histologically.

NASH is defined as steatosis in the presence of hepatocyte damage, inflammation and/or subsequent scarring and replacement of the tissue with type I collagen. (Hassan et al., 2014)

The development of NASH is considered to be through a "two hit" process. The first "hit" includes accumulation of fat in liver cells, the second "hit" causes hepatocyte inflammation and necrosis which lead to cirrhosis and fibrosis. (**Papandreou et al., 2007**)

Since the term NASH was first coined by Ludwig et al. in 1980 the prevalence of NAFLD has risen rapidly in parallel with the dramatic rise in population levels of obesity and diabetes, NAFLD now representing the most common cause of liver disease in the Western world.

The prevalence of NAFLD is estimated to be between 20% and 30% in Western adults, rising to 90% in the morbidly obese. NASH, the more advanced and clinically important form of NAFLD is less common, with an estimated prevalence of 2–3% in the general population 16 and 37% in the morbidly obese. (**Dowman et al., 2011**)

Most subjects with NAFLD are clinically silent and asymptomatic. Ultrasonography still represents the first-line diagnostic tool for simple liver steatosis.

(Wong et al., 2010)

Liver biopsy is still the gold standard in diagnosis of NASH. (Abdel kader and Ashmawy, 2015)

Knowledge of whether a patient has simple steatosis or NASH is very important prognostically.

With increasing liver fibrosis the ALT typically falls and the AST remains stable or rises.

Staging fibrosis is essential in all patients with NAFLD to identify subjects with advanced fibrosis . (**Dyson et al., 2013**)

The NAFLD fibrosis score (NFS) is a panel comprising six variables of age, hyperglycaemia, BMI, platelet count, albumin and AST/ALT ratio, which was constructed using a large panel of 733 biopsy-proven NAFLD patients across several centres worldwide. (**J k et al., 2010**)

<u>-1.675+0.037×age (years)+0.094×BMI (kg/m2)+1.13×IFG or diabetes</u> (yes=1, no=0)+0.99×AST/ALT ratio—0.013×platelet (×109/L)—0.66×albumin (g/dL)

Advanced fibrosis can be reliably excluded (NPV 93%) using the low cut-off score (<-1.455) and diagnosed with high accuracy (PPV 90%) using the high cut-off score (>0.676). (**Dyson et al., 2013**)

IL-6 is a proinflammatory pleiotropic cytokine produced by adipocytes, hepatocytes, immune and endothelial cells

Wieckowska et al.demonstrated a markedly increased IL-6 expression in liver tissue of patients with NASH as compared to simple steatosis or normal liver. (Sanja et al., 2014)

Aim of work

To predict nonalcholic steatohepatitis in patient with NAFLD through measurement of interleukin 6 to predict progression of the disease into liver cirrhosis through early diagnosis .

Methods and patients

Type of study: Case control study

Patients will be selected from El Demerdash Hospital outpatient clinic of liver.

We will select:

- 40 cases of simple steatosis (u/s showing changes of fatty liver and ALT, AST within normal ranges with no advanced fibrosis by NAFLD fibrosis score)
- 30 patients of NASH (u/s showing changes of fatty liver with elevated ALT, AST)
- 20 healthy control with normal u/s and normal ALT, AST.

Exclusion criteria

- 1. Liver cirrhosis by u/s.
- 2. Alcoholic
- 3. Hepatitis B or C positive.
- 4. Any cause of elevated liver enzymes as Wilson disease ,Autoimmune hepatitis Hemochromatosis ,drugs etc..

5.BMI >40

All cases and controls will be tested for interleukin 6 using an enzyme-linked immunosorbent assay kit after taking an informed consent.

This thesis will include:

- Introduction
- aim of the work.
- Review of literature .
- Subject and methods .
- Results.
- Discussion.
- Summary and conclusion .
- References .
- Arabic summary.

References

- **1. Kareem Hassan, Varun Bhalla, Mohamed Ezz El Regal et al. (2014):** nonalcoholic fatty liver disease: A comprehensive review of a growing epidemic. J Gastroenterol Hepatol 12082-12101
- **2. Dowman JK, Tomlinson JW and Newsome PN. (2011):** Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis; 33(5):525-40.
- **3.Angulo P and Lindor KD. (2002):** Non-alcoholic fatty liver disease. J Gastroenterol Hepatol.; 17 Suppl: S186–S190
- **4. Papandreou D, Rousso I and Mavromichalis I. (2007):** Update on non-alcoholic fatty liver disease in children. Clin Nutr.; 26:409–415
- **5. Shehab M Abd El-Kader and Eman M Salah El-Den Ashmawy.** (2015): Non-alcholic fatty liver disease: The diagnosis and management World J Hepatol.; 7(6): 846–858.
- **6.Wong VW, Vergniol J, Wong GL, et al. (2010)**: Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology. 2010; 51:454–462.
- **7.Sanja Stojsavljević, Marija Gomerčić Palčić, Lucija Virović Jukić, et al.(2014):** Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease .World J Gastroenterol. 2014 Dec 28; 20(48): 18070–18091.
- **8.Jessica K Dyson, Quentin M Anstee, and Stuart McPherso.** (2013):

Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 2014 Jul; 5(3): 211–218.