

Implication of Flow Cytometry-Based Maturity Score in Risk Stratification of Acute Myeloid Leukemia In Adult Egyptians

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

Presented By

Esraa Adel Mahmoud El Debaky M.B., B.Ch

Supervised By

Prof. Dr. Hanaa Mohammed El Sayed Afifi

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Shaimaa Abdelmalik Pessar

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Alia Mohammed Saeed Ahmed

Lecturer of Clinical Hematology & Hemato-oncology Unit of Internal Medicine Department Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Hanaa Mohammed**El Sayed Afifi, Professor of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Shaimaa**Abdelmalik **Dessar**, Assistant Professor of Clinical

Pathology, Faculty of Medicine, Ain Shams

University, for her sincere efforts, fruitful

encouragement.

I am deeply thankful to **Dr. Aliaa Mohammed**Saced Ahmed, Lecturer of Clinical Hematology &
Hemato-oncology Unit, of Internal Medicine
Department, Faculty of Medicine, Ain Shams
University, for her great help, outstanding support,
active participation and guidance.

Esraa Adel Mahmoud El Debaky

To:

My parents

for their endless love, support, and continuous care

> My Husband & My Family

List of Contents

Title	Page No.
List of Tables	6
List of Figures	9
List of Abbreviations	10
Introduction	1 -
Aim of the Work	3
Review of Literature	
Acute Myeloid Leukemia	4
■ Prognosis of Acute Myeloid Leukemia	31
Subjects and Methods	46
Results	56
Discussion	87
Summary	97
Conclusion	99
References	101
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	FAB classification of AML:	12
Table (2):	AML with recurrent genetic abnor	malities14
Table (3):	2016 WHO classification of acute leukemia	•
Table (4):	Expression of cell surface and cytomarkers for the diagnosis of AMPAL according to European Lawrence Network	ML and eukemia
Table (5):	Maturity Score	38
Table (6):	2017 ELN risk stratification by ger	netics45
Table (7):	Reagents used for Flowcytometry	50
Table (8):	Clinical features of the AML patier	nts57
Table (9):	Laboratory features of the population	
Table (10):	Distribution of the studied po according to FAB classification	
Table (11):	Distribution of FAB groups reprognosis	
Table (12):	Distribution of the studied po according to cytogenetic prognosti (ELN classification)	c groups
Table (13):	Distribution of the studied po according to different cyt abnormalities.	togenetic
Table (14):	Disease outcome at 28 days and 6 i	months 66
Table (15):	Survival analysis of the studie patients	

Tist of Tables cont...

Table No.	Title	Page No.
Table (16):	Distribution of the studied popaccording to expressed markers score and the degree of expression.	of the
Table (17):	Distribution of patients among so Maturity Score.	
Table (18):	Comparison between mature immature groups regarding characteristics.	clinical
Table (19):	Comparison between mature immature group regarding lab data	oratory
Table (20):	Comparison between mature immature groups regarding FAB su	
Table (21):	Comparison between mature immature groups regarding cyto abnormality and ELN cyto prognostic group	genetic genetic
Table (22):	Comparison between mature immature groups according to outcome and survival groups	disease
Table (23):	Comparison between patients in and PR/death as regards clinical data	
Table (24):	Comparison between patients in and PR/death regarding routine lab data	oratory
Table (25):	Comparison between patients in and PR/death regarding FAB subty	

Tist of Tables cont...

Table No.	Title	Page No.
Table (26):	Comparison between patients in and PR/death regarding maturity s	
Table (27):	Comparison between patients in versus PR/death regarding cyt data and ELN prognostic groups	ogenetic
Table (28):	Comparison between disease outcomonths regarding clinical character	
Table (29):	Comparison between disease outcomonths regarding routine laborator	
Table (30):	Comparison between disease outcomonths regarding FAB subtypes	
Table (31):	Comparison between disease outcomenths regarding maturity states core.	tus and
Table (32):	Comparison between disease outcoments regarding cytogenetic abnual ELN prognostic groups	ormality
Table (33):	Correlation between expression per of each of maturity score separately and OS/ DFS	markers
Table (34):	Mean survival and CI of Kapla:	n Meier

List of Figures

Fig. No.	Title	Page No.
Figure 1:	The model of the "classical" class class II mutations in AML	
Figure 2:	The combination model of class unclassified mutations in AML	
Figure 3:	Molecular mechanisms involved in	AML11
Figure 4:	Phases of therapy	27
Figure 5:	NAVIOS 2 Laser 6 color FCM (Beckman Coulter, USA)	
Figure 6:	Sex distribution of the studied popu	ılation 58
Figure 7:	Clinical features of the studied population	ulation 58
Figure 8:	Distribution of the studied popaccording to FAB classification	
Figure 9:	Distribution of the studied popaccording to cytogenetic prognostic (ELN classification)	groups
Figure 10:	Distribution of the studied AML paccording to maturity score	
Figure 11:	Kaplan Meier Curve illustrating in maturity status on OS	_

Tist of Abbreviations

Abb.	Full term
ALL	Acute lymphoblastic leukemia
	Acute Myeloid Leukemia
	AML with myelodysplasia-related changes
	Acute promyelocytic leukemia
	All-trans-retinoic acid
BM	
<i>CART</i>	chimeric antigen receptor-T
	Complete blood count
	Core Binding Factor
	Cluster of Differentiation
	CCAAT/enhancer-binding protein alpha
	Confidence interval
	Mast/stem cell growth factor receptor
	(SCFR)
CNS	Central nervous system
CR	Complete Remission
DIC	disseminated intravascular coagulopathy
	Deoxyribonucleic acid
DNMT3A	DNA-Methyltransferase 3A
<i>EFS</i>	Event free survival
<i>ELN</i>	European Leukemia Net
FAB	French American British classification
	Flow Cyto-metry
FISH	Fluorescence in-situ hybridization
FITC	Fluorescein isothiocyanate
FLT3	FMS-like tyrosine kinase 3
	Graft-versus-leukemia effect
HLA-DR	Human leukocyte antigen-antigen D related
HSCT	Hematopoietic stem cell transplantation

Tist of Abbreviations cont...

Abb.	Full term
·OD	
	. incomplete remission
	. Isocitrate dehydrogenase
<i>INV</i>	
	. Immuno-phenotyping
=	. Interquartile range
	. internal tandem duplications
<i>K-EDTA</i>	. K-Ethylene Diamine Tetra-Acetic Acid
<i>LAIP</i>	. Leukemia associated immunophenotype
<i>LAPs</i>	. Leukemia-associated aberrant
<i>MDR</i>	. Multi-drug resistant
<i>MDS</i>	$.\ My elo dy splastic\ syndrome$
<i>MLL</i>	. Mixed lineage leukemia
<i>MPAL</i>	. Mixed phenotype acute leukemia
<i>MPNs</i>	. Myeloproliferative neoplasms
<i>MPO</i>	. Myeloperoxidase
<i>MRD</i>	. Minimal residual disease
<i>NCCN</i>	. National Comprehensive Cancer Network
NOS	. Not otherwise specified
<i>NPM</i>	$.\ Nucleophosmin$
<i>NSE</i>	. Non- specific esterase
<i>OS</i>	. Overall survival
<i>p</i>	. Short arm of chromosome
<i>PB</i>	. Peripheral Blood
PBS	. Phosphate buffered saline
PCR	. Polymerase chain reaction
PE	. Phycoerythrin
PR	. partial remission
<i>q</i>	. Long arm of chromosome
RBCs	. Red blood cells

Tist of Abbreviations cont...

Abb.	Full term
$RN\Delta$	Ribonucleic acid
	Sudan black B
	Stem cell factor
	Stem cell transplantation
	Standard deviation
	Signal transducer and activator of
	transcription
<i>t</i>	Translocation
<i>TAM</i>	Transient abnormal myelopoiesis
TdT	Terminal Deoxynucleotidyl transferase
	ten eleven translocation 2
<i>TK</i>	Tyrosine kinase
<i>TKD</i>	tyrosine kinase domain
TKI	Tyrosine kinase inhibitor
<i>TLC</i>	Total leucocytic count
<i>TP53</i>	tumour protein p53
<i>TRM</i>	Treatment-related mortality
<i>WBCs</i>	White blood cells
<i>WHO</i>	World Health Organization

INTRODUCTION

cute myeloid leukemia (AML) is a malignant tumor of hemopoietic progenitor cells of non-lymphoid lineage, arising in the bone marrow (BM) (*Provan et al., 2015*). Cytogenetic and molecular genetic abnormalities are thought to drive clonal expansion of early hematopoietic progenitor cells, which leads to rapid progressive suppression of normal bone marrow hematopoiesis. Subsequently, patients suffering from AML develop symptoms attributed to granulocytopenia, anemia, and thrombocytopenia (*Estay et al., 2006*).

The diagnosis of acute leukemia is established by the presence of 20% or more blasts in the bone marrow or peripheral blood. AML is further diagnosed by demonstrating the myeloid origin of these cells through testing for myeloperoxidase activity or documenting the presence of Auer rods, immunophenotyping, presence of an extra-medullary tissue infiltrate, or a documented t(8;21), inv(16) or t(15;17) in the appropriate clinical setting, regardless of the blast percentage (*Vardiman et al.*, 2009).

The leukemic lineage and evolution processes can be characterized by examining a variety of differentiation antigens, and cellular immune-phenotypic identification by Flow cytometry (FCM). The FCM has become an integral part of the laboratory diagnosis and classification of acute leukemia. Flow cytometric analysis of leukemia should include panels of

antibodies against differentiation antigens for hematopoietic lineage and differential stage assignment (*Liu et al.*, 2014).

In 2009, the European Leukemia Net (ELN) proposed a standardized reporting system that risk stratifies patients according to their genetic subgroup. Nowadays, it is well established for early prognostic assessment in AML patients (*Mrózek et al.*, 2012).

In order to establish immunophenotypic features that predict prognosis, many studies over the past two decades have been providing relevant information at the role of various cellular phenotypes assessed at initial diagnosis in predicting therapy response. The associations of these phenotypes generally have been strong and are clearly predictive when coupled with several factors such as age, sex, initial hemoglobin level, and total leucocytic and platelets counts (*Vaskova et al.*, 2005).

The expression of single AML blast cell antigens has been evaluated with partly conflicting results; however, the influence of immunophenotypic blast maturity is largely unknown. *In 2015*, *Schneider et al.* proposed a flow cytometric maturity score based on the quantitative expression of three markers of immaturity; CD34, CD117, and TdT with a score from 0 to 5; a score of 5 indicates maximal immaturity and a score of 0 indicates maturity. They claimed that AML blast maturity can predict clinical outcome and correlated well with survival rates even within the different ELN cytogenetic risk groups.

AIM OF THE WORK

o determine the influence of immunophenotypic maturity, via application of the flow cytometric maturity score based on quantitative expression of the three markers of immaturity; CD34, CD117, TdT with a score from 0 to 5, on clinical outcome and laboratory parameters of patients with acute myeloid leukemia within the different cytogenetic risk groups.