سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Evaluation of Chromogenic Agar Medium for the Detection and Presumptive Identification of Urinary Tract Pathogens

Thesis

Submitted to The High Institute of Public Health – University of Alexandria in partial fulfillment of the requirements for the

Degree of Master of Public Health (Microbiology)

 $\mathbf{B}\mathbf{y}$

Suzan Ragab Ahmed El-Kalza

M.B.B.Ch. - Faculty of Medicine - University of Alexandria - 1990

B.

3

High Institute of Public Health University of Alexandria 2003

SUPERVISORS

Prof. Dr. Medhat Saber Ashour

Professor of Microbiology

High Institute of Public Health

University of Alexandria

Prof. Dr. Mohamed Magdy Adbel-Kader

Professor of Internal Medicine

Faculty of Medicine

University of Alexandria

Mohard Myl

ACKNOWLEDGEMENT

First and foremost thanks to God. The most gracious and merciful for help and strength offered to me to complete this work.

Words can not adequately express my heartfelt thanks profound gratitude and deepest appreciation to **Prof. Dr. Medhat Saber Ashor,** Professor of Microbiology, High Institute of Public Health, Alexandria University for his infinite patience, valuable meticulous advice, kind guidance, unlimited cooperation, continuous encouragement, constructive criticism as well as for his constant moral support with the open hearted personality of that of a true scientist which made his supervision a great pleasure to me.

I would like to extend my deep thanks and profound appreciation to **Dr. Mohamed Magdy Abdel-Kader**, Professor of internal Medicine Faculty of Medicine,

Alexandria University for his kind efforts, valuable suggestions, constructive criticism and contact encouragement. I would like to thank him also for his valuable guide.

My deepest thanks to all members of the staff and personnel of microbiology who directly or indirectly helped to deliver this work of light I also wish to thank all members of staff., nurses and personnel of urology out-patient clinic of Alexandria Main University Hospital for their help during collecting of samples.

Last but not least, I owe special thanks and gratitude to my parents, busband, son Ahmed and my brother for their endless support, help, understanding and patience with out which I would have never fulfilled this piece of work.

LIST OF ABBREVIATIONS

AIDS : Aquired immuno deficiency syndrome

BA : Blood agar

BCM-LMDS : BCM L.Monocytogens detection system

B-D Kit : Becton Dickinson Kit

BPA : Baird Parker agar

CA : CHROM agar Candida

CAN : Colombia colistiin-nalidixic acid

CAS : CHROM agar Salmonella

CCA : Chromo cult coliforms agar

CEB : Chromo cult enterococci broth

CFU : Colony forming unites

CLED : Cystien-lactose electrolyte deficient

CMM : Cubic millimeter

CMV : Cytomegalo virus

CNS : Coagulase negative staphylococci

CSA : CHROM agar staph.aureus

CSE : Chromogenic Salmonella esterase

CSU : Catheter specimen of urine

CUA II : Chromogenic urine agar II

DC : Esoxycholate citrate

ESRD : End stage renal disease

GBS : Group B streptococci

GUD : β -D-Glucuronidase

H.P.F : High power field

HEA : Hektoen enteric agar

HSV : Herpes simplex virus

McC : MacConkey's

MSU : Midstream urine

MμGLR: 4-Methylmbellifery L-β-D-glucuronide

NNIS : National nosocomial infection surveillance

OIF : Oil immersion field

ONPG : O-nitrophenyl-β-D-galactopyranoside

PNP : P-nitrophenol

PNPGLR : P-nitro-phenol-β-D-glucuronidde

RBCs : Red blood cells

SDA : Sabouarud dexetrose agar

SMA : Sorbitol MacConkey's agar

SPA : Suprapubic aspiration

TDA : Tryptophan deaminase

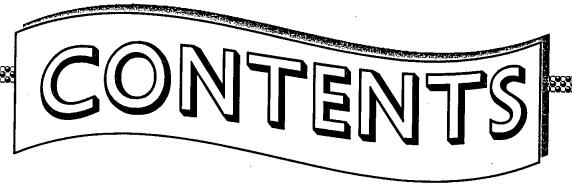
USDA : US Department of Agriculture

UT : Urinary tract

UTI : Urinary tract infection

UTIs : Urinary tract infections

UV : Ultraviolet


WBCs : White blood cells

X-GAL : 5-bromo-4-chloro-3 indolyl-β-D-galactopyranoside

X-GLU : 5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside

XLD : Xylose lysine deoxycholate

 β -GAL : β -D-galactosidase

	Page
Introduction	1
Aim of the work	63
Material and Methods	64
Results	88
Discussion	114
Conclusion	128
Recommendation	129
Summary	130
References	135
Appendix	÷
Protocol	
Arabic Summary	

List of Tables

Table		Page
I	Urine isolates presumptively identified on chromogenic urine agar II	72
II	Identification of bacterial isolates from chromogenic media	73
III	Identification of staphylococci and micorcocci	82
IV	Identification of oxidase negative lactose fermenting isolates	83
\mathbf{V}_{\cdot}	Identification of oxidase negative non-lactose fermenting isolates	84
VI	Identification of oxidase positive non-lactose fermenting isolate	85
VII	Culture outcome of 200 urine specimens of symptomatic patients Alex. 2002	89
VIII	Distribution of 218 urinary pathogens isolated from 200 urine specimens with significant bacteriuria	92
IX	Isolates detected in 200 urine samples in relation to sex. Alexandria 2002	96
X	Relationship between isolates detected in 200 urine samples and age. Alexandria 2002	99
XI	Percentage of recovery of 182 monomicrobial urine isolates in relation to the used culture media	102
XII	Percentage of recovery of 36 isolates recovered from 18 polymicrobial cultures out of the 200 urine specimens in relation to the used culture media	105
XIII	Presumptive identification of urinary tract pathogens isolated on chromogenic urine agar II	108
XIV	Sensitivity, specificity and efficiency of CHROMOGENIC URINE agar II in detection of urinary tract pathogens isolated from (182) monomicrobial cultures out of the 200 urine specimens.	110
XV	Sensitivity, specificity and efficiency of CHROMOGENIC URINE agar II in detection of urinary tract pathogens isolated from (18) polymicrobial cultures out of the 200 urine specimens.	112

List of Figures

Figure		Page
1	Streaking pattern for inoculating media for semiquantitative bacterial colony counts	34
2	Diagram of dip strip	35
3	Dip strip impressions on an agar plate, showing conversion from number of colonies to number of bacteria per ml.	36
4	Quantitative urine culture on blood agar	69
5	Quantitative urine culture on CUA II	69
6	Qualitative urine culture on MacConkey's agar showing lactose fermenting colonies	71
7	CUA II plate showing monomicrobial growth of opaque pink colonies exhibiting +ve spot indole test. (<i>E.coli</i>)	74
8	CUA II plate showing monomicrobial growth of blue mucoid colonies (<i>Klebsiella</i> spp.).	74
9	CUA II plate showing monomicrobial growth of brown colonies with brown halo (<i>Proteus</i> spp.).	76
10	(a) Spot indole test performed directly on CUA II primary isolation plate	76
	(b) CUA II plate showing monomicrobial growth of brown colonies with brown halo exhibiting +ve indole test (<i>Proteus vulgaris</i>)	
11	CUA II plate showing monomicrobial growth of small light pink opaque colonies (CNS)	77
12	CUA II plate showing monomicrobial growth of small blue- green colonies (<i>E.faecalis</i>)	77
13	CUAII plate showing monomicrobial growth of colourless colonies (<i>Staph.aureus</i>)	79
14	CUA II plate showing polymicrobial growth (<i>E.faecalis</i> and <i>Proteus spp.</i>)	79

samples and age. Alexandria 2002 19 Percentage of recovery of 182 monomicrobial urine isolates 103 in relation to the used culture media	Figure		Page
urine specimens with significant bacteriuria 17 Isolates detected in 200 urine samples in relation to sex. 97 Alexnadria 2002 18 Relationship between insolates detected in 200 urine 100 samples and age. Alexandria 2002 19 Percentage of recovery of 182 monomicrobial urine isolates in relation to the used culture media 20 Percentage of recovery of 36 isolates recovered from 18 polymicrobial cultures out of the 200 urine specimens in	15	•	90
Alexnadria 2002 18 Relationship between insolates detected in 200 urine 100 samples and age. Alexandria 2002 19 Percentage of recovery of 182 monomicrobial urine isolates in relation to the used culture media 20 Percentage of recovery of 36 isolates recovered from 18 106 polymicrobial cultures out of the 200 urine specimens in	16		93
samples and age. Alexandria 2002 19 Percentage of recovery of 182 monomicrobial urine isolates 103 in relation to the used culture media 20 Percentage of recovery of 36 isolates recovered from 18 106 polymicrobial cultures out of the 200 urine specimens in	17	•	97
in relation to the used culture media 20 Percentage of recovery of 36 isolates recovered from 18 106 polymicrobial cultures out of the 200 urine specimens in	18		100
polymicrobial cultures out of the 200 urine specimens in	, 19.	•	103
	20	polymicrobial cultures out of the 200 urine specimens in	106

V.

+