

Association of CD34 Positive Cell Count with Chronic Graft Versus Host Disease in patients with Acute Myeloid Leukemia who had Allogeneic Peripheral Blood Stem Cell Transplantation

Ehesis

Submitted for partial fulfilment of master degree in clinical haematology

Pay Nermeen Mamdouh Salah Amin *M.B., B.Ch.*

Supervised by

Prof. Dr / Hoda Ahmed Elsayed Gad Allah

Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Prof. Dr / Mohamed Abdel-Mooti Mohamed Samra

Professor Of Medical Oncology-Clinical Haematology and BMT National Cancer Institute, Cairo University


Assistant Prof. Dr / Walaa Ali El Salakawy

Assistant Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Faculty of medicine
Ain Shams University
(2018)

At the beginning, I would like to confess favor and thanks to ATLAH who granted me the power, patience and reconciliation at all time. Without his great blessing, I would never accomplish my work.

No word could express my feeling of gratitude and respect to: Prof. Dr / Hoda Ahmed Elsayed Gad Allah Professor of Internal Medicine- Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for the great and generous help, for his useful advice, marvelous effort and support during this study.

No word could express my feeling of gratitude and respect to: Prof. Dr / Mohamed Abdel-Mooti Mohamed Samra, Professor Of Medical Oncology-Clinical Haematology and BMT, National Cancer Institute, Cairo University, for the great and generous help, continuous supervision and expert guidance throughout this entire work.

No word could express my feeling of gratitude and respect to: Assistant Prof. Dr / Walaa Ali El Salakawy, Assistant Professor of Internal Medicine- Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University.

Nermeen Mamdouh Salah Amin

LIST OF CONTENTS

Title	Page No
List of Contents	I
List of Abbreviations	II
List of Tables	IV
List of Figures	V
Introduction	1
Aim of the work	6
Review of Literature	7
Hemopoietic stem cells transplantation in Acute Mye	eloid
Leukemia	7
Graft-Versus-Host-Disease	41
> CD 34 count in Bone Marrow Transplant	85
Patients and Methods	114
Results	137
Discussion	176
Summary	188
Referencesانعربي اللخس	

LIST OF ABBREVIATIONS

		LIST OF ADDREVIATIONS
Abb.		Full Term
aGVHD	:	Acute graft versus host disease
ALLO-HSCT	:	allogenic hemopoietic stem cell transplantation
AML	:	Acute Myeloid Leukemia
APL	:	Acute promyelocytic Leukemia
ASCT	:	Autologous stem cell transplantation
ATO	:	Arsenic trioxide
ATRA	:	All trans retinoic acid
BAL	:	Bronchoalveolar lavage
\mathbf{BM}	:	Bone Marrow
BOS	:	Bronchiolitis obliterans
Bu	:	Busulfan
CB	:	Cord blood
CD	:	cluster of differentiation
cGVHD	:	Chronic Graft Versus host disease
CIBMTR	:	Center for International Blood and Marrow Transplant Research
CR	:	complete remission
CRc	:	cytogenetic remission
CRm	:	molecular CR
CSA	:	Cyclosporine
CY	:	Cyclophosphamide
DIC	:	Disseminated intravascular coagulation
EBMT	:	Europian Bone Marrow Transplant
FAB	:	French American British classification
FLT3	:	Fms- like tyrosine kinase
FLT3-ITD	:	FLT3 – internal tandem duplucations
FLT3-L	:	FLT3- Ligand
FLU	:	Fludarabine
G-CSF	:	Granulocyte macrophage colony stimulating factor
GVHD	:	Graft Versus Host Disease
GVL	:	Graft Versus Leukemia
HB	:	Hemoglobin

LIST OF ABBREVIATIONS

	LIGI OF ADDILLY AFTONS	
Abb.	Full Term	
HCTCI	: Hemopoietic cell transplantation comorbidity index	
HLA	: human leucocytic antigen	
HSCT	: Hemopoietic stemm cell transplantation	
MAC	: myeloablative conditioning	
MDS	: Myelodysplastic syndrome	
MDS/MPN	: Myelodysplastic/Myeloproliferative neoplasm	
MPO	: Myeloperoxidase	
MRD	: minimal residual disease	
MSD	: matched sibling donor	
MUD	: matched unrelated donor	
NK	: natural killer cells	
NPM	: Nucleophosmin	
NRM	: non related mortality	
PB	: peripheral blood	
PBSC	: peripheral blood stem cell	
PBSCT	peripheral blood stem cell transplantation	
PCP	: pneumocystis phneuminia	
PI	: prognostic index	
PLT	: Platelets	
RIC	: reduced intensity conditioning	
SOS	: Sinusoidal obstruction syndrome	
t-AML	: Therapy related Acute myeloid leukemia	
TBI	: Total body irradiation	
TMA	: thrombotic microangiopathy	
TNC	: total nucleated count	
UCB	: unrelated cord blood	
URD	: unrelated donor	
VOD	: veno occlusive disease	
WBC	: white blood count	
WHO	: world health organization	

LIST OF TABLES

Table No.	Title	Page No.
Table (1): FAB Cla	ssification	12
Table (2): Acute my	yeloid leukemia and relat	ed precursor neoplasm,
and acute	leukemias of ambiguous	lineage (WHO 2008)13
Table (3): Expressi	on of cell-surface and cy	ytoplasmic markers for
the diagr	nosis of acute myeloid	leukemia and mixed
		16
	lized reporting for correla	
	_	h clinical data17
	Ç	s with AML in relapse20
• •		plant in AML: 23
	endation for alloHSCT i	
_	-	33
	teristics of the study p	
, ,	teristics of the study	
	elation between CD34	all count and other
		144
	n between the Recipient	
		146
	outcome measures in Rec	
count <7	x10^6/l or >7 x10^6/l	152
	sted odds ratio for main	
	vith high CD34+ cell coun	
		155
	er-operating characteristi	
for predic	tion of main outcome mea	asures using CD34+ cell
count		156
Table (15): Relat	tion between chronic G	GVHD and categorical
		169
	tion between chronic (GVHD and numerical
		173
	ivariable binary logistic r	
_		174
	ivariable binary logistic r	
prediction	chronic GVHD	175

LIST OF FIGURES

Figure N	o. Title	Page No.
Figure (2): l	Bone Marrow Anatomy	10 the recipient's $LC \ge 1,000/mm^3$
	Mean recipient CD34+ cell count in patients GVHD	with or without147
Figure (5):	Mean recipient CD34+ cell count in patients chronic GVHD	
	Mean recipient CD34+ cell count in patients relapse	149
	Mean recipient CD34+ cell count in survivor	151
	Main outcome measures in Recipient with C $x10^6/l$ or $>7 x10^6/l$	153
	Receiver-operating characteristic (ROC) cur GVHD using CD34+ cell count	158
Figure (10):	Receiver-operating characteristic (ROC) cu chronic GVHD using CD34+ cell count	<u>-</u>
	Receiver-operating characteristic (ROC) curelapse using CD34+ cell count	160
	Receiver-operating characteristic (ROC) cu GVHD using CD34+ cell count	161
	Kaplan-Meier (K-M) curves for the time to ≥500/mm3 in recipients with high or low C	D34+ cell count162
Figure (14):	Kaplan-Meier (K-M) curves for the time to ≥1,000/mm3 in recipients with high or low	CD34+ cell count
Figure (15):	Kaplan-Meier (K-M) curves for the time to count of ≥25,000/mm3 in recipients with hi cell count	gh or low CD34+
Figure (16):	Kaplan-Meier (K-M) curves for the time to count of \geq 100,000/mm3 in recipients with he cell count	nigh or low CD34+
Figure (17):	Kaplan-Meier (K-M) curves for GVHD-fre recipients with high or low CD34+ cell courses.	ee survival in
Figure (18):	Kaplan-Meier (K-M) curves for disease-free recipients with high or low CD34+ cell court	ee survival in

Tist	of	Fig	jures
4.5.	~	\mathcal{O}^{γ}	,

	_
200	7.1
63	

Figure (19):	Kaplan-Meier (K-M) curves for overall survival in recipier	nts
	with high or low CD34+ cell count	168
Figure (20):	Incidence of chronic GVHD in patients with normal or oth	er
	cytogenetics	172

Introduction

Hematopoietic stem cell transplantation (HSCT) is now established as a standard therapeutic modality for a variety of and non-malignant diseases. The first successful malignant allogeneic HSCT was done with bone marrow (BM) as the source of hematopoietic stem cells in 1968. Nowadays physicians are faced with 3 viable choices of stem cells for allogeneic HSCT, namely BM, PBSC and CB and clinicians have to face the challenges of selecting the optimal stem cell source. Although all 3 sources of stem cells are capable of reconstituting the hematopoietic system in recipient transplant, they have many inherent differences in cellular constituents and biological and immunological properties. (Cheuk. et al, 2013).

G-CSF-mobilized PBSC are increasingly used instead of BM cells for G-CSF-mobilized PBSC are increasingly used instead of BM cells for allogeneic transplantation because they provide faster engraftment and better survival in recipients with poor-risk disease (Group SCTC, 2005).

Important difference among the sources of stem cell is the amount of mature T cells present. PBSC usually contains a lot more mature T cells compared to BM, which in turn contains more T cells compared to CB, and this partly explains the differences in the risk of graft rejection and graft-versus-host

Depletion of T cells is associated with disease (GVHD). increased risk of graft rejection and disease relapse, but lower risk of GVHD (Switzer. et al, 2013).

One of the main reasons for preferring PSC worldwide is the important advantages provided by this method to the donor. These advantages are avoidance of anesthesia, lack of the need for hospitalization or blood transfusion, and very low serious adverse event risk (Itir Sirinoglu Demiriz et al, 2012).

the randomized controlled trials (RCTs) Most of comparing matched related donor BMand **PBSC** transplantation for patients with hematological malignancies found no significant differences between the two stem cell source in important outcomes including overall survival, disease-free survival, transplant-related mortality, relapse, acute GVHD and chronic GVHD. However, all trials showed significantly faster neutrophil engraftment in PBSC transplants, and all but one trial showed significantly faster platelet engraftment in PBSC transplants, which may result in earlier hospital discharge for PBSC recipients and lower cost for PBSC transplantation. Lymphocyte recovery was also found to be better in the PBSC group in one trial (Powles.et al, 2000).

Some trials showed significantly higher probability of relapse in BM recipients than in PBSC recipients, which might translate into better disease-free survival in PBSC

transplants compared with BM transplants (Mielcarek. et al, 2012).

Some trials showed PBSC recipients had significantly more grade 2-4 acute GVHD, chronic GVHD and extensive chronic GVHD compared with BM recipients, which resulted in significantly more patients who underwent PBPC transplant needed immunosuppressive treatment, and longer periods of corticosteroid use and hospitalization (Friedrichs. et al, 2011).

There was no difference in performance status, return to work, incidence of bronchiolitis obliterans, hematopoietic function, and secondary malignancies between the two groups in the long term in one trial. In contrast, another trial showed that late mortality due to chronic GVHD was more frequent in PBSC recipients compared with BM recipients.

The number of peripheral-blood stem cells is estimated with use of the cell-surface molecule CD34 as a surrogate marker. The number of CD34+ cells in blood can be increased by mobilizing them from the marrow with granulocyte colonystimulating factor (G-CSF), which causes the proliferation of neutrophils and the release of proteases. Proteases degrade the proteins that anchor the stem cells to the marrow stroma and, together with protease-independent mechanisms, free the cells to enter the circulation (Levesque. et al, 2004).

While in autologous transplantation the studies published so far have shown that infusion of high doses of CD34 + cells leads to a faster hematopoietic engraftment and decreased transplantation related morbidity, within the allogeneic setting optimal dose of hematopoietic information regarding the progenitor cells remains controversial. While some studies have reported a positive impact on outcome in terms of faster engraftment and fewer infectious episodes by infusing high numbers of CD34+cells in patients undergoing bone marrow transplantation, other authors have shown an increased risk of acute or chronic graft-versus-host disease (GVHD) in patients receiving high doses of unmanipulated peripheral blood stem cells (PBSCs) (Zaucha. et al, 2001). Among recipients of CD34+selected allogeneic transplants, the influence of the number of CD34 +cells on survival remains contradictory, since in CD34 +selected marrow transplantation higher cell doses lead to improved survival, while the opposite occurs with CD34+-selected PBSC transplants (Urbano-Ispizua. et al., 2001).

As cGvHD remains a significant problem after PBSC transplant, a major issue is to identify associated risk factors. Currently, there is no evidence that the factors commonly associated with GVHD after BM transplants have a role in the setting of PBSC transplant.

Furthermore, in contrast to results obtained after BM transplants, several studies, mainly in myeloablative PBSC transplantation from HLA identical sibling donors, demonstrated that the number of infused CD34 + cells strongly impacts the incidence of acute or chronic GVHD in PBSC transplant (Pe' rez-Simo' n. et al, 2002).

Aim of the work

The aim of the study is to assess CD34 in Egyptian patients with AML subjected to allogeneic peripheral blood stem cell transplantation and its relation to level of chronic graft versus host disease in the time period from January 2008 to December 2014.