

SIMULATION OF LIGHTNING STRIKE EFFECTS ON AIRCRAFT SKIN COMPOSITE LAMINATE

By

Muhammad Elsayed Hamza Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

SIMULATION OF LIGHTNING STRIKE EFFECTS ON AIRCRAFT SKIN COMPOSITE LAMINATE

By

Muhammad Elsayed Hamza Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Under the Supervision of

Prof. Dr. Nader M. Abuelfoutouh	Assistant Prof. Dr. Gasser F. Abdelal		
Emeritus Professor	Assistant Professor		
Aerospace Engineering Department	School of Mechanical and Aerospace		
Faculty of Engineering, Cairo University	Engineering, Queen's University Belfast, UK.		

SIMULATION OF LIGHTNING STRIKE EFFECTS ON AIRCRAFT SKIN COMPOSITE LAMINATE

By

Muhammad Elsayed Hamza Khalil

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Approved by the Examining Committee

Prof. Dr. Nader M. Abuelfoutouh Emeritus Professor at Aerospace Engineering, Cairo University	Thesis Main Advisor
Assistant Prof. Dr. Gasser F. Abdelal Assistant Professor at School of Mechanical and Aerospace Engineering, Queen's University Belfast, UK	Advisor
Prof. Dr. Atef O. Sherif Emeritus Professor at Aerospace Engineering, Cairo University	Internal Examiner
Prof. Dr. Adrian Murphy Professor at School of Mechanical and Aerospace Engineering, Queen's University Belfast, UK	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer: Muhammad Elsayed Hamza Khalil

Date of Birth: 25/ 03/ 1989

Nationality: Egyptian

E-mail: Muhammad.hamza@eng1.cu.edu.eg

Address: Samatay, Qutour, Gharbyia, Egypt

Registration Date: 01/03/2012

Awarding Date: 2018

Award: Master of Science

Department: Aerospace Engineering

Supervisors: Prof. Dr. Nader M. Abuelfoutouh

Assistant Prof. Dr. Gasser F. Abdelal

Assistant Professor at Queen's University Belfast, UK

Examiners: Prof. Dr. Nader M. Abuelfoutouh, Thesis Main Advisor

Assistant Prof. Gasser F. Abdelal, Advisor

Assistant Professor at Queen's University Belfast, UK

Prof. Dr. Atef O. Sherif Internal Examiner

Prof. Dr. Adrian Murphy External Examiner

Professor at Queen's University Belfast, UK

Title of Thesis:

Simulation of Lightning Strike Effects on Aircraft Skin Composite Laminate Key Words:

Lightning Strike, Electric Arc, Composite Laminates, Thermal Plasmas, Magnetohydrodynamic Modeling (MHD).

Summary:

Aircraft carbon fiber/epoxy composite material is sensitive to lightning strike. Its damage and protection design suffering from lightning strike is becoming increasingly important. A numerical model is proposed to describe an arc and its interaction with a composite material in an anodic configuration. After a validation step with published experimental results in two dimensions (2D), the model is used to quantify the degradation level of the material versus the pulse duration and the current intensity value. A three-dimensional (3D) model is then developed and used to evaluate the degradation of the composite material. This model shows the behaviour of the plasma column representing the lightning strike and quantifies the power transferred to the anode. The contribution of this study is modeling the composite panels' material properties as temperature dependent, which was excluded by other researchers. The order of estimated temperature (of the order of 45,000 K) and pressure (of the order of 0.1-0.2 MPa) suggests that the waveform – C damage is mainly due to thermoelectric effect, while pressure effect is minimum.

Acknowledgment

Thanks Allah first, last and forever for giving me knowledge, willingness and patience.

I would like to express my sincere gratitude to my advisor Prof. Mohamed N. Abu Elfoutouh for the continuous support of my MSc study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my MSc study.

My sincere thanks also goes to Prof. Gasser F. Abdelal who provided me an opportunity to join their team as intern, and who gave access to the laboratory and research facilities. Without they precious support it would not be possible to conduct this research.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Atef o. Sherif, Prof. Adrian murphy for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives.

Last but not the least, I would like to thank my family: my parents and to my brothers and sisters for supporting me spiritually throughout writing this thesis and my life in general.

Dedication

To my father for his partnership in every success in my life.

Table of Contents

Acknowledg	gment	1
Dedication		i
Table of Con	ntents	ii
List of Table	es	iv
List of Figur	es	v
Nomenclatu	re	vii
Abstract		X
-	ntroduction	
1.1. Ba	ekground	1
1.2. Lig	thtning and aircrafts: damage and protections	2
1.2.1.	Aircraft Zoning	
1.2.2.	Direct effects	3
1.2.3.	Indirect effects	
1.2.4.	Laboratory tests for certification considerations	
	jectives of present work	
1.4. Org	ganization of the thesis	6
Chapter 2: L	iterature Review	7
2.1. Dir	rect effect damage induced by lightning	
2.1.1.	Metallic materials	
2.1.2.	Composite materials	
2.2. Lig	thtning modelling	10
2.2.1.	Insights into lightning induced phenomena	
2.2.2.	Electro-thermal model.	12
2.2.3.	Mechanical based models	14
2.2.4.	Energy based model	15
Chapter 3: L	ightning Strike Multiphysics	17
3.1. Ph	ysical Modeling of the arc and governing equations	17
3.1.1.	Theoretical Formulation	17
3.1.2.	Assumptions	18
3.1.3.	Electric Module (ec) & Magnetic Module (mf)	18
3.1.4.	Fluid Flow Equations (spf)	18
3.1.5.	Modelling of the arc-electrodes interfaces	19
3.2. Co	mputational domain and boundary conditions	20
3.3. The	e heat transfer at the arc-electrodes interfaces	21

3.3	.1.	The arc/anode interface	21
3.3	.2.	The arc/cathode interface	23
3.4.	Wa	veform-C Simulation	23
3.5.	Ana	llysis of the different regions of the process	24
3.5	.1.	The arc plasma column	25
3.5	.2.	The anode region	25
3.5	.3.	The cathode region	26
3.6.	Fini	te Element Model	26
3.7.	Res	ults and Discussion	28
3.7	.1.	Experimental validation	32
Chapter	4 Int	eraction with the Composite Laminate	40
4.1.	The	oretical Formulation	40
4.2.	Fini	te Element Model	42
4.3.	Bou	indary Conditions	43
4.4.	Res	ults and Discussion	44
Chapter	5 Li	ghtning Strike Protection (LSP)	48
5.1.	Intr	oduction	48
5.1	.1.	Solid Metal Foils (SMF)	49
5.1	.2.	Expanded metal foils (EMF)	50
5.1	.3.	Conductive paints.	50
5.1	.4.	Metalized carbon fibers	50
5.2.	The	oretical Formulation	52
5.3.	Fini	te Element Model	53
5.3	.1.	Expanded Copper Foil (ECF)	53
5.3	.2.	Glass/Epoxy Lamina	56
5.3	.3.	Corrosion Resistance of Glass/Epoxy	57
5.4.	Res	ults and Discussion	58
Chapter	6 Di	scussion and Conclusions	60
6.1.	Met	hodology	60
6.2.	Mai	n accomplishments and findings	61
6.3.	Rec	ommendations for future work	61
Appendi	ix A:	The thermodynamic and transport properties of air plasma	63
Appendi	ix B:	Subroutine file	69
Referen	200		76

List of Tables

Table 3-1: Material properties for all domains	20
Table 3-2: Model Boundary conditions	21
Table 4-1: Carbon fiber/epoxy thermal and electrical material properties vs. temperatu	ire [24].
Table 5-1: Copper thermal and electrical material properties vs. temperature [24]	
Table 5-2: E-Glass fiber/epoxy thermal and electrical material properties	56

List of Figures

Figure 1-1: Formation of the leaders during a cloud-to-earth lightning strike	
Figure 1-2: Airplane initiating a lightning strike	2
Figure 1-3: Aircraft zoning [1,2]	3
Figure 1-4: Normalized current for lightning strike tests in laboratory [3]	6
Figure 2-1: Lightning damage on aluminum skins (pinhole and magnetic forces action) [8-	10]
Figure 2-2: Phenomena contributing to lightning direct effect on a fuselage panel [28]	11
Figure 2-3: Multi-physical actions of a lightning strike on composite material: thermal,	
electromagnetic and other components [25]	12
Figure 2-4: Possible phenomenon occurring with through-thickness electrical conduction [
Figure 2-5: Surface damage after a lightning strike [17]	
Figure 2-6: Ultrasonic C-scan of post lightning strike specimens at 30, 50 and 70kA [27]	
Figure 2-7: Ultrasonic C-scan of post impact specimens at several energy (6.78J, 20.34J,	.10
33.89J) [27]	16
Figure 3-1: Computational domain used for calculations, dimensions are in mm	
Figure 3-2: Definition of the normal vectors used in the model	
Figure 3-3: A typical pulsed current used in our model.	
Figure 3-4: Evolution of the electric potential along the arc plasma axis.	
Figure 3-5: Flowchart of multiphysics calculations	
Figure 3-6: Schematic grid for the calculation domain.	
Figure 3-7: Total heat flux injected at the surface of the anode	
Figure 3-8: Plasma conduction heat flux injected at the surface of the anode	
Figure 3-9: Condensation heat flux at the surface of the anode	
Figure 3-10: Radiation loss at the surface of the anode	
Figure 3-11: Current density injected at the surface of the anode	
Figure 3-12: Current density injected at the surface of the anode	
Figure 3-13: Temperature profile of waveform-C at (a) $t = 0.25$ s and (b) $t = 0.5$ s	
Figure 3-14: Temperature profile of waveform-C at (a) t =0.23 s and (b) t =0.3 s	
Figure 3-14. Temperature profile of waveform-C at the ahode surface	
Figure 3-16: Absolute pressure profile of waveform-C at (a) $t = 0.25$ s and (b) $t = 0.5$ s	
Figure 3-17: Electric Field of waveform-C at (a) $t = 0.25$ s and (b) $t = 0.5$ s	
	37
Figure 3-19: Magnetic Potential of waveform-C at (a) $t = 0.25$ s and (b) $t = 0.5$ s	
Figure 3-20: Electric Potential of waveform-C at (a) $t = 0.25$ s and (b) $t = 0.5$ s	
Figure 4-1: Benchmark composite panel setup from impulse electrical current with applied	
boundary conditions	
Figure 4-2: Geometry used by Jennings and Hardwick [19].	
Figure 4-3: Material degradation experimentally obtained by Jennings and Hardwick [19].	
Figure 4-4: Decomposed laminate layout.	
Figure 4-5: Top lamina temperature profile	
Figure 4-6: Temperature profile for 2 nd layer.	
Figure 4-7: Temperature profile for 3 rd layer.	
Figure 4-8: Temperature profile for 4 th layer.	
Figure 5-1: Protections against lightning strikes (a) ECF and (b) SCF	
Figure 5-2: Visible damage after lightning strike on (a)unprotected sample and	51

Figure 5-3: modelling of the copper protection panel (ECF)	.55
Figure 5-4: Benchmark protected meshed composite panel setup from impulse electrical	
current with applied boundary conditions	.56
Figure 5-5: Protected meshed composite panel at the panel center	.56
Figure 5-6: Temperature profile for the composite laminate including the copper mesh meta-	al
(ECF) and GF	.58
Figure 5-7: Temperature profile for the composite laminate including the copper mesh meta-	al
(ECF) and GF at the panel center	.58

Nomenclature

Abbreviations

LTE Local Thermodynamic Equilibrium

MHD Magnetohydrodynamic

LSP Lightning Strike Protection system

FEA Finite Element Analysis

SMF Solid Metal Foils

ECF Expanded Metal Foils

CFRP Carbon Fiber Reinforced Polymers

Symbols

 \vec{H} Vector magnetic field intensity

 \vec{D} Electric displacement vector

 σ Electrical conductivity

 \vec{J} Current density

 ε Dielectric constant (permittivity)

 μ_0 Permeability

 \vec{E} Electrical field intensity

V Electrical potential

 \vec{B} Magnetic flux density

 \vec{A} Magnetic potential

 \vec{v} Velocity vector

t Time

 ρ Density

μ Viscosity

p Pressure

k Thermal conductivity

T Temperature

T₀ Ambient Temperature

*k*_B Stefan-Boltzmann constant

e Electron charge

 ϵ_N Net emission coefficient

 q_a Anode heat flux

 q_c Cathode heat flux

 q_{pl} Plasma heat flux

 \vec{n} Vector normal to the electrodes surfaces

 j_i Ion current density

 j_e Electron current density

 V_i Air ionization potential

 \emptyset_c Cathode work function

 \emptyset_a Anode work function

 \emptyset_{ρ} Effective work function

V_A Anode fall voltage

A_r Richardson's constant

j_r Richardson current density

r_c Internal volumetric current source per unit volume

 P_{ec} Electrical energy

 η_{ν} Energy conversion factor

 \dot{U} Time rate of the internal energy

r Heat generated within the body

 T_b Boiling temperature

 T_{tc} Critical temperature

m Atomic mass of the material

 L_{ν} Latent heat of vaporization of the material

x, y, z Space coordinates

C_P Specific heat at constant pressure

 C_{pb} , C_{pa} Specific heat of composite and char

 f_a , f_b Volume fraction of composite and char

 H_s Decomposition heat

 α Decomposition degree

 M_i Initial mass of composite

 M_e Final mass of composite