

Myocardial Necrosis in ICU Patients with Severe Hemodynamic Disturbances

A Thesis Submitted for partial fulfillment Of Master Degree In General Intensive Care By

Osama Abdella Mohammed

M.B.CH. B (Cairo University)
Under Supervision of

Prof. Bassem Boulos Ghobrial

Professor of Anesthesia, Intensive Care and Pain Management -Ain Shams University

Dr. Amal Hamed Rabie

Lecturer of Anesthesia, Intensive Care and Pain Management -Ain Shams University

Dr. Heba Fouad Abd El-Aziz Toulan

Lecturer of Anesthesia, Intensive Care and Pain Management – Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgment

First and foremost, thanks to ALLAH, the most beneficent and merciful.

I wish to express my deepest appreciation and sincere gratitude to **Prof.Dr. Bassem Bulos Ghobrial** Prof. of anesthesia, intensive care medicine and pain management, Ain Shams University, who suggested this subject for reviewing and for his supervision, continuous help and patience. It was a great honor for me to work under his supervision.

I wish to express my sincere thanks and deepest gratitude to **Dr. Amal Hamed Rabie**, Lecturer of anesthesia, intensive care medicine and pain management, Ain Shams University for her eminent guidance, encouragement and revision throughout the work.

Also, I would like to express my sincere thanks and deepest gratitude to **Dr. Heba Fouad Abd El-Aziz Toulan**, lecturer of anesthesia, intensive care medicine and pain management, Ain Shams University, for her keen and valuable guidance and encouraging for applying some of these techniques.

finally, I would like to express my gratitude and deepest thanks to my family whom without their help and support, this work would not have been complete.

Osama Abdella Mohammed

Contents

	Page
Acknowledgement	I
List of Abbreviations	III
List of Tables	V
List of Figures	VII
List of Algorithms	IX
Introduction	1
Aim of The Work	4
Review of Literature	5
Patients and methods	43
Results	60
Discussion	75
Conclusion	84
Summary	85
References	88
Arabic Summary	1

List of Abbreviations

LA	Left atrium
RA	Right atrium
LV	Left ventricle
RV	Right ventricle
LCA	Left coronary artery
RCA	Right coronary artery
LAD	Left anterior descending artery
LCX	Left circumflex artery
PDA	Posterior descending artery
AV	Atrioventricular
SA	Sinoatrial
SL	Semilunar
LVH	Left ventricular hypertrophy
GI	Gastrointestinal
DM	Diabetes mellitus
CRF	Coronary reserve flow
MI	Myocardial infarction
ECG	Electrocardiogram
ICU	Intensive care unit
ADH	Antidiuretic hormone
BP	Blood pressure
BUN	Blood urea nitrogen
ABG	Arterial blood gas test
CT	Computed tomography
IV	Intravenous
ESICM	The European Society of Intensive Care Medicine
HES	Hydroxyethyl starch
FFP	Fresh frozen plasma

SOFA	Total sequential organ failure assessment
SIRS	Systemic inflammatory response syndrome
MODS	Multiple organ dysfunction
GU	Genitourinary
PT	Prothrombin time
aPTT	activated partial thromboplastin time
CNS	Central Nervous System
GCS	Glasgow Coma Scale
Sepsis-3	The Third International Consensus Definition for Sepsis
ARDS	Adult Respiratory Distress Syndrome
Psyst	Systolic pressure
CVP	Central venous pressure
US	United State of America
AMI	Acute myocardial infarction
cTnI	Cardiac troponin I
CK-MB	Creatine kinase MB
AST	Aspartate aminotransferase
ALT	Alanine aminotransferase
CBC	Complete blood count
WBCs	White blood cells
RBCs	Red blood cells
Hb	Hemoglobin
НСТ	Hematocrit
ScvO ₂	Central oxygen saturation
HR	Heart rate
MAP	Mean arterial pressure
ЕСНО	Echocardiography
EF	Ejection Fraction
RWMA	Regional wall motion abnormality
ACS	Acute coronary syndrome

List of Table

Table No.	Title	Page
1	Sequential organ failure assessment score (SOFA score)	38
2	Quick SOFA Score	39
3	Demographic Data	60
4	Comparison between Group A & Group B in Mean Arterial Pressure	61
5	Comparison between Group A & Group B in Heart rate	62
6	Comparison between Group A & Group B in Central venous pressure	63
7	Comparison in vasoactive drugs needed between Group A & Group B	64
8	Comparison between Group A & Group B in Sofa Score assessment	65
9	Comparison between Group A & Group B in serum lactate	66
10	Comparison between Group A & Group B in CK-MB	67
11	Comparison between Group A & Group B in Troponin I	68
12	Comparison between Group A & Group B in ST segment elevation	69

Table No.	Title	Page
13	Comparison between Group A & Group B in ST segment depression	70
14	Presence of Q wave between Group A & Group B	71
15	Comparison between Group A & Group B in Ejection fraction	72
16	Comparison between Group A & Group B in Regional wall motion abnormality	72
17	Incidence of Myocardial infarction	74

List of Figure

Figure No.	Title	Page
1	Chambers of the heart	8
2	Heart Valves	8
3	Coronary arteries	9
4	Relation between cardiac cycle & ECG	19
5	Comparison between Group A & Group B in Mean Arterial Pressure	61
6	Comparison between Group A & Group B in Mean Arterial Pressure	62
7	Comparison between Group A & Group B in Central venous pressure	63
8	Comparison in vasoactive drugs needed between Group A & Group B	64
9	Comparison between Group A & Group B in Sofa Score assessment	65
10	Comparison between Group A & Group B in serum lactate	66
11	Comparison between Group A & Group B in CK-MB	67
12	Comparison between Group A & Group B in Troponin I	68

Figure No.	Title	Page
13	Comparison between Group A & Group B in	73
	Regional wall motion abnormality	
14	Incidence of Myocardial infarction	74
15	ECG showing tachy-arrhythmia with T-wave changes	80

List of Algorithms

Algorithm No.	Title	Page
1	Circulatory pathway of the cardiovascular system	14
2	Conducting system of the heart	16
3	Cardiac cycle	19

Introduction

Shock is a life-threatening condition of circulatory failure which commonly presents with hypotension. The effects of shock are initially reversible but can rapidly become irreversible, resulting in multi-organ failure and death. Thus, when a patient present with undifferentiated hypotension and is suspected of having shock, it is important that the clinician rapidly identify the etiology so that appropriate therapy can be administered to prevent multi-organ failure and death(Vincent& De Backer, 2013).

Shock results from different pathophysiological mechanisms, hypovolemia from internal or external fluid loss, or distributive factors e.g., septic shock or anaphylaxis from the release of inflammatory mediators. Hypovolemic shock is characterized by low cardiac output and, inadequate oxygen transport. In distributive shock, the main deficit lies in the periphery, with decreased systemic vascular resistance and altered oxygen extraction. Typically, in such cases cardiac output is high, although it may be low as a result of associated myocardial depression (**De Backer et al., 2010**).

In patients admitted to the Intensive Care Unit (ICU) for reasons different from cardiac disease, several clinical events can cause myocardial ischemia and acute myocardial infarction both of which can be hard to be diagnosed. However, they can be diagnosed by increasing of serum markers of myocardial damage associated with suggestive symptoms and electrocardiographic (ECG) changes (Alpert et al., 2000).

Actually, in the critically ill patients the diagnosis can be particularly challenging since acute myocardial infarction induced abnormalities, including hemodynamic instability, a reduced level of consciousness, ECG changes and elevated blood levels of cardiac enzymes can be caused also by non-cardiac events (Landesberg et al., 2005).

Critically ill patients are exposed to a high degree of non-cardiac stress, which increases myocardial oxygen consumption. At the same time, the myocardial oxygen supply may be reduced by hypotension, tachycardia, hypoxemia, anemia, and intrinsic coronary artery disease. An unexpectedly high incidence of clinically unrecognized myocardial injury, according to elevated levels of cardiac troponin I (cTnI), has been reported in the critically ill patients (Noble et al., 2002).

During septic shock the coronary circulation displays abnormalities similar to those of the systemic circulation. A maldistribution of nutritive blood flow and a disturbance in diffusive oxygen delivery, as reflected by abnormally high coronary sinus oxygen content and low oxygen extraction, have been reported in both human and animal studies (Groeneveld et al., 2008).

Aim of the work

To compare the incidence of myocardial injury in patients with hypovolemic shock versus septic shock.

Review of literature

Anatomy of the Heart:

The normal human heart varies with height and weight, it's located in the chest, directly above the diaphragm in the region of the thorax called mediastinum, specifically the middle mediastinum. The tip (apex) of the heart is pointed forward, downward, and toward the left, the (inferior) diaphragmatic surface lies directly on the diaphragm (**Edwards et al., 2001**).

The heart lies in a double walled fibroserous sac called the pericardial sac, which is divided into fibrous pericardium, and serous pericardium, the fibrous pericardium envelops the heart and attaches onto the great vessels, the serous pericardium is a closed sac consisting of two layers: A visceral layer or epicardium forming the outer lining of the great vessels and the heart, and parietal layer forming an inner lining of the fibrous pericardium. The two layers of the serous pericardium contain the pericardial fluid, which prevents friction between the heart and the pericardium (Boulpaep, 2005).

The wall of the heart is composed of three layers: epicardium; myocardium; & endocardium. The epicardium