

Early Postoperative Results Comparison between Left Anterior Descending Artery Patch and Jumping Graft in CABG

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiothoracic Surgery

By

Ahmed Ibrahim Ali Yossif M.B.B.CH

Supervised By

Prof. Dr. Hatem Yazed El-Bawab

Prof. of Cardiothoracic Surgery
Faculty of Medicine - Ain Shams University

Dr. Yaser Mahmoud El-Nahas

Assist. Prof. of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Mazen Esam El-Din Elsergany

Lecturer of Cardiothoracic Surgery National Heart Institute

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah the Most Beneficent and Merciful.

With all my deepest and most sincere feelings, I would like to acknowledge Prof. Dr. Hatem Yazed El-bawab, Professor of Cardiothoracic Surgery Department, Faculty of Medicine, Ainshams University, for his continuous motivation that will remain lights in my life.

I want to express my sincere gratitude to Prof. Dr. Yasser Mahmoud El-Nahas, Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain shams University for his kind supervision, generous help and excellent guidance and eminent supervision which tied me over the difficulties I met during this work.

I wish to express my extreme thanks and appreciation to Dr. Mazen Esam El-din Elsergany Lecturer of Cardiothoracic Surgery, National Heart Institute, for his support, encouragement and teaching.

I owe a heavy debt of gratitude to all the Staff Members and Workers of the Department of Cardiothoracic Surgery, Faculty of Medicine, Ain-shams University for their valuable suggestions and fruitful cooperation.

No words can be sufficient to express my gratitude and indebtedness to My Family who have been encouraging me throughout my life and behind every success I have done.

Ahmed Ibrahim Ali Yossif

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients and Methods	41
Results	62
Discussion	77
Summary	86
Conclusion and Recommendations	90
References	92
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Distribution of the studied patients regather their age and sex:		63
Table (2) :	Distribution of the studied patients regardheir lab results pre and post in first undergo LAD patch:	group	65
Table (3) :	Distribution of the studied patients regard their lab results pre and post in second undergo Jumping graft:	arding group	
Table (4) :	Distribution of the studied patients regather Echo results pre and post in first undergo LAD patch:	arding group	
Table (5) :	Distribution of the studied patients regather Echo results pre and post in second undergo jumping graft:	arding group	
Table (6):	Postoperative morbitidy and mortality:		
Table (7):	Distribution of the studied patients regather ICU and hospital stay in first undergo LAD patch:	group	74
Table (8) :	Distribution of the studied patients regard their ICU and hospital stay in second undergo jumping graft:	arding group	
Table (9) :	Distribution of the studied patients regarded post-operative blood transfusion in first undergo LAD patch:	arding group	
Table (10):	Distribution of the studied patients regarded post-operative blood transfusion in sugroup undergo jumping graft:	arding econd	
Table (11):	At 6 weeks postoperative clinical outcome		

List of Tables

Table No.	Title	Page	No.
Table (1):	Distribution of the studied patients regather their age and sex:		63
Table (2) :	Distribution of the studied patients regardheir lab results pre and post in first undergo LAD patch:	group	65
Table (3) :	Distribution of the studied patients regard their lab results pre and post in second undergo Jumping graft:	arding group	
Table (4) :	Distribution of the studied patients regather Echo results pre and post in first undergo LAD patch:	arding group	
Table (5) :	Distribution of the studied patients regather Echo results pre and post in second undergo jumping graft:	arding group	
Table (6):	Postoperative morbitidy and mortality:		
Table (7):	Distribution of the studied patients regather ICU and hospital stay in first undergo LAD patch:	group	74
Table (8) :	Distribution of the studied patients regard their ICU and hospital stay in second undergo jumping graft:	arding group	
Table (9) :	Distribution of the studied patients regarded post-operative blood transfusion in first undergo LAD patch:	arding group	
Table (10):	Distribution of the studied patients regarded post-operative blood transfusion in sugroup undergo jumping graft:	arding econd	
Table (11):	At 6 weeks postoperative clinical outcome		

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Origin of the coronary arteries as so frontal (A and B) and cranial (C) view	
Figure (2):	The short extent of the main stem o coronary artery is seen before it linto the circumflex and anterior de arteries	branches scending
Figure (3):	Left coronary artery with its branche	es6
Figure (4):	Independent origin of the right con (yellow arrow)	
Figure (5):	The heart damage in coronary artery ranges from narrowing of a coronary at complete blockage of a coronary a	ry artery
Figure (6):	Anatomy of Internal mammary arter	y19
Figure (7):	Radial Artery (RA)	21
Figure (8):	Radial artery harvesting	24
Figure (9):	MSCT show Normal coronary artery.	35
Figure (10):	MSO HOW Normal Left coronary OM1, OM2, OM3	
Figure (11):	CA show Diffuse CAD of the LAD arte	ry45
Figure (12):	CA show Diffuse CAD of the LAD ar OM1, OM2	•
Figure (13):	The left internal mammary artery ha	rvesting48
Figure (14):	Great Saphenous vein harvesting	50
Figure (15):	Radial artery harvesting	52

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Origin of the coronary arteries as se frontal (A and B) and cranial (C) view	
Figure (2):	The short extent of the main stem of coronary artery is seen before it be into the circumflex and anterior desarteries	oranches scending
Figure (3):	Left coronary artery with its branches	s6
Figure (4):	Independent origin of the right cona (yellow arrow)	
Figure (5):	The heart damage in coronary artery ranges from narrowing of a coronar to complete blockage of a coronary ar	y artery
Figure (6):	Anatomy of Internal mammary artery	719
Figure (7):	Radial Artery (RA)	21
Figure (8):	Radial artery harvesting	24
Figure (9):	MSCT show Normal coronary artery	35
Figure (10):	MSCT SHOW Normal Left coronary a OM1, OM2, OM3	
Figure (11):	CA show Diffuse CAD of the LAD arter	y45
Figure (12):	CA show Diffuse CAD of the LAD are OM1, OM2	•
Figure (13):	The left internal mammary artery har	vesting48
Figure (14):	Great Saphenous vein harvesting	50
Figure (15):	Radial artery harvesting	52

List of Figures cont...

Fig. No.	Title	Page No.
Figure (16):	Atheroma was taken on the operating after opening the coronary artery	
Figure (17):	Onlay saphenous vein patch	56
Figure (18):	LIMA anastomosis to the onlay SVG pa	atch57
Figure (19):	CA show Diffuse LAD disease	62
Figure (20):	Distribution of the studied patients re their sex	-
Figure (21):	Distribution of the studied patients re their risk factors.	
Figure (22):	Distribution of the studied patients re their Hb results pre and post in firs undergo LAD patch	t group
Figure (23):	Distribution of the studied patients re their Hb results pre and post in secon undergo jumping graft.	d group
Figure (24):	Distribution of the studied patients re their LVED results pre and post in firs undergo LAD patch	st group
Figure (25):	Distribution of the studied patients re their LVED results pre and post in group undergo jumping graft	second
Figure (26):	MSCT OF coronary artery post CAE LIMA onlay saphenous vein patch SVG to OM, SVG to RCA	to LAD,
	List of Figures cont	
Fig. No.	Title	Page No.

Figure (27):	MSCT of coronary artery post CABG, LIMA onlay sapenous vein patch to LAD, SVG to OM, SVG to RAMUS	71
Figure (28):	MSCT of coronary artery post CABG, LIMA onlay sapenous vein patch to LAD	72
Figure (29):	MSCT of coronary artery post CABG, LIMA onlay sapenous vein patch to LAD, length 62.5mm	73

List of Abbreviations

Abb.	Full term
ADP	Adenosine diphosphate
AF	
	Average peak velocity
	Adenosine triphosphate
	Coronary artery bypass grafting
	Coronary artery disease
	C-reactive protein
D	-
DF	_
DM	Diabetus Mellitus
DSVR	Diastolic to systolic velocity ratio
	Electrocardiography
EF	
ET-1	
ETA	Endothelin receptors
Hb	Heamoglobuin
IMA	Internal mammary artery
ITA	Internal thoracic artery
LA	Left atrium
LAD	Left anterior descending
LCx	Left circumflex
LDL	Low-density lipoprotein
LIMA	Left internal mammary artery
LITA	Left internal thoracic artery
LM	Left main

List of Abbreviations cont...

Abb.	Full term
LVED	Left ventricular end diastole
	Left ventricular end systole
	Marginal acute
MI	Myocardial infarction
MO	Marginal obtuse
MSCT	Multisclise computed tomograph
	Radial Artery
RBCs	Red blood cells
RCA	Right coronary artery
RIMA	Right internal mammary artery
SD	Standard deviation
SVG	Saphenous vein graft
TIAs	Transient ischemic attacks
VSD	Ventricular septal defect

Introduction

Introduction

Voronary artery bypass grafting (CABG) significantly life increase expectancy, complete myocardial revascularization should be the main goal of the surgical with the increased use of percutaneous intervention interventions by cardiologists, the number of high-risk and elderly patients referred for CABG operation has increased. Because the diffusely diseased LAD is frequently encounterd in this patient population, complete myocardial revascularization may not be achieved by conventional bypass techniques.¹

Although coronary endarterectomy has been tried as an alternative adjunct, most surgeons are still reluctant to use this approach because of the controversial results reported in the literature because of its high perioperative mortality. Thus cardiac surgeons are now focused on new techniques that avoid endarterectomy procedure or at least limit the length of the endarterectomized arterial segment.²

Recently, different means of LAD reconstruction using long-segmental anastomosis techniques have been introduced in this special subgroup of patient to afford complete myocardial revascularization. The early results suggest that these approaches are comparable with conventional bypass techniques, but only a limited number of studies have reported the clinical outcomes, patency rates, and the incidence of cardiac-related events at long-term follow-up. Furthermore, the heterogenous nature of the patient populations in different stuies renders more difficult the interpretation of the results and confuses the data analysis.³

However, modification of conventional techniques are needed to achieve satisfactory long-term outcomes because the classic bypass grafting to LAD may lead to suboptimal results.⁴

Coronary endarterectomy is usually the technique of choice in patients presenting with diffuse and extensive coronary artery disease. Although the benefits endarterectomy of the LAD have been published, many surgeons are still reluctant to use this technique because of its high perioperative and postoperative mortality rates. Another major concern with this technique is the development of myofibrointimal proliferation, which negatively affects the early and long-term clinical and angiographic results⁵