

SINGLE CHANNEL SLOTTED CONTENTION FOR COGNITIVE RADIO VEHICULAR NETWORKS

By

Nada Gamal Ahmed Ibrahim Elgaml

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

SINGLE CHANNEL SLOTTED CONTENTION FOR COGNITIVE RADIO VEHICULAR NETWORKS

By

Nada Gamal Ahmed Ibrahim Elgaml

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hebat-Allah M. Mourad

Professor
Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

Professor
Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

SINGLE CHANNEL SLOTTED CONTENTION FOR COGNITIVE RADIO VEHICULAR NETWORKS

By

Nada Gamal Ahmed Ibrahim Elgaml

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee	
Prof. Dr. Hebat-Allah M. Mourd ,	Thesis Main Advisor
Associate Prof. Dr. Ahmed Khattab F. Khattab,	Advisor
Prof. Dr. Magdy M. S. El-Soudani,	Internal Examiner
Prof. Dr. Ahmed Elsayed Alarabi Almahde, - German University in Cairo	External Examiner

Engineer's Name: Nada Gamal Ahmed Ibrahim

Date of Birth: 18/01/1992 **Nationality:** Egyptian

E-mail: nadagamalelgaml@gmail.com

Phone: (+02) 01001525829

Address: Block 13, Division 6, Zahraa Elmaadi

Registration Date: 01/03/2018

Awarding Date: 2018

Degree: Master of Science

Department: Electronics and communications Engineering

Supervisors:

Prof. Dr. Hebat-Allah Mourad Dr. Ahmed Khattab Fathi Khattab

Examiners:

Prof. Dr. Ahmed Elsayed Alarabi (External Examiner)

- German University in Cairo

Prof. Dr. Magdy M. S. El-soudani (Internal Examiner)
Prof. Dr. Hebat-Allah Mourad (Thesis Main Advisor)

Dr. Ahmed Khattab Fathi Khattab (Advisor)

Title of Thesis:

Single Channel Slotted Contention For Cognitive Radio Vehicular Networks

Key Words:

Cognitive Radios; Vehicular Networks; Slotted Contention; IEEE 802.11p.

Summary:

Cognitive Radio Vehicular Ad-hoc Networks (CR-VANETs) exploit the dynamic spectrum capability of cognitive radios to allow the vehicles to access the unused channels in their vicinity. The existing VANETs protocols are not originally designed as enablers for cognitive radios. Therefore, CR-VANETs do not only suffer the traditional CR problems, especially in spectrum sensing, but also suffer new challenges due to the highly dynamic nature of VANETs. This thesis presents a spectrum sensing and reporting protocol for non-safety applications, which counters the deficiencies of typical CR-VANETs in high-density networks. We introduce the Single Channel Slotted Contention (SC)² protocol for highly dense vehicular traffic on highways. The proposed protocol consists of three main components: random single channel sensing, slotted contention and implicit aggregation. The proposed (SC)² protocol can be easily incorporated with the IEEE 802.11p. Simulation results show that the proposed protocol increases the secondary throughput and spectrum utilization while significantly decreasing the radio environment map time in high densities when compared to the legacy IEEE 802.11p based protocols. A trade-off between the primary outages and the secondary throughput can be controlled via the contention window size. We also analytically study the collision probability and secondary throughput of the (SC)² and the IEEE 8021.11p based protocols.

Acknowledgements

I was extremely lucky to have had exceptional mentors, who set the bar so high and to whom I will forever be grateful. I would like to express my very great appreciation to Professor Dr. Heba Mourad for her patient guidance, enthusiastic encouragement and constrictive critiques of this research work.

My deepest and enormous gratitude goes to Associate Professor Dr. Ahmed Khattab who has inspired me to achieve at levels much higher than I ever thought possible. His guidance, leniency, and endless support during the thesis process and the past five years were invaluable. For being my mentor, I have discovered a passion for learning, asking questions, exploring and researching. For that, I am forever thankful.

My very heartfelt and sincere thanks recorded to my friend Mona Fouad. This work would not have been done without her support and help.

Finally, many thanks and love to my family especially mom and dad who have been exceptionally encouraging and caring throughout my life.

Dedication

To my beloved parents, Gamal Elgaml & Sahar Saad

My dear siblings, Sara, Ali & Mostafa

My beautiful nieces, **Bisan & Nuria**

Table of Contents

A	cknow	ledgem	nents	i
D	edicat	ion		ii
Ta	able of	f Conte	nts	iii
Li	ist of [Fables		vi
Li	ist of l	Figures		vii
Li	ist of A	Abbrevi	iations	ix
Li	ist of S	Symbols	s	xiii
A	bstrac	et .		xviii
1	INT	RODU	CTION	1
	1.1	Vehicu	ılar Networks	. 1
		1.1.1	Vehicular Network Applications	. 1
			1.1.1.1 Active Road Safety	
			1.1.1.2 Infotainment Applications	
			1.1.1.3 Green Applications	
		1.1.2	Vehicular Network Architecture	
		111.	1.1.2.1 On Board Unit	
			1.1.2.2 Application Unit	
			1.1.2.3 Road Side Unit	
		1.1.3	Vehicular Communication	
			1.1.3.1 Vehicle-to-Vehicle Communication	
			1.1.3.2 Vehicle-to-Infrastructure Communication	
		1.1.4	Vehicular Wireless Access Standards	
		1.1.5	Spectrum Scarcity in Vehicular Networks	
	1.2	Dynan	nic Spectrum Access	
		1.2.1	Cognitive Radio	
			1.2.1.1 Spectrum Sensing	. 6
			1.2.1.1.1 Spectrum Sensing Challenges and Techniques	
			1.2.1.2 Spectrum Analysis	
			1.2.1.3 Spectrum Decision	
			1.2.1.4 Spectrum Adaptation	
	1.3	Cognit	tive Radio Vehicular Networks	
		1.3.1	Cognitive Radio Vehicular Network Challenges	
	1.4		ation	
	1.5		Organization	8

2	PRF	ELIMIN	NARIES AND LITERATURE REVIEW	10
	2.1	IEEE	802.11p Wireless Access Standard	10
		2.1.1	Physical Layer in IEEE 802.11p	10
		2.1.2	Medium Access Control Layer in IEEE 802.11p	
		2.1.3	Distributed Coordination Function	
		2.1.4	Enhanced Distributed Coordination Function	12
		2.1.5	IEEE 802.11p Reporting-based CR-VANETs Protocols Frame	
			Structure	13
	2.2	Relate	ed work	14
		2.2.1	Spectrum Exploration	14
			2.2.1.1 Predictive Exploration	15
			2.2.1.2 Database-based Exploration	17
			2.2.1.3 Random Exploration	17
			2.2.1.4 Sequential Exploration	
		2.2.2	Spectrum Exploitation	18
			2.2.2.1 Non-Cooperative Spectrum Sensing	18
			2.2.2.1.1 Energy Detector	20
			2.2.2.1.2 Matched Filters	20
			2.2.2.1.3 Cyclostationary Detection	21
			2.2.2.1.4 Non-Cooperative Spectrum Sensing in CR-	
			VANETs	22
			2.2.2.2 Cooperative Spectrum Sensing	22
			2.2.2.2.1 Distributed Cooperative Spectrum Sensing in	
			CR-VANETs	23
			2.2.2.2.2 Centralized Cooperative Spectrum Sensing in	
			CR-VANETs	
	2.3	Summ	nary	29
3	PR(RI FN	A STATEMENT AND SYSTEM MODEL	31
J	3.1		em Statement	
	3.1		m Model	
	3.2	3.2.1	Road Model	
		3.2.2	Vehicular Traffic Model	
		3.2.3	Channel Model	
		3.2.3	3.2.3.1 Channel Sensing	
		3.2.4	Network Model	
		3.2.∓	3.2.4.1 Primary Network	
			3.2.4.2 Secondary Network	
		3.2.5	Communication Model	
	3.3		nary	
4	CIN	CI F C	HANNEL SLOTTED CONTENTION PROTOCOL	38
7	4.1		ANETs Frame Structure	
	4.1		Channel Slotted Contention $(SC)^2$	
	→. ∠	4.2.1	Single Random Channel Selection	
		4.2.1	Slotted Contention	
		4.2.2	Implicit Aggregation	
		7.∠.೨		+3

	4.3	Summary	44
5	ANA	ALYSIS OF THE PROPOSED (SC) ² PROTOCOL	45
	5.1	Performance of Energy Detector and Preliminaries	45
		5.1.1 False Alarm, Detection and Miss Detection Probabilities	46
		5.1.1.1 Non-fading Environment	46
		5.1.1.2 Nakagami-m Fading Environment	47
	5.2	Collision Probability	48
		5.2.1 Collision Probability in Single Channel Slotted Contention	48
		5.2.1.1 Fading Effect on the Number of Competing Nodes	49
		5.2.1.2 Probability of No Collision and Collision	49
		5.2.2 Collision Probability of IEEE 802.11p Based Protocols	52
	5.3	Secondary Throughput	54
		5.3.1 Secondary Throughput in Single Channel Slotted Contention Pro-	
		tocol	54
		5.3.2 Secondary Throughput in IEEE 802.11p Based Protocols	56
	5.4	Summary	60
_	DED	VEODMANGE EVALUATION	~1
6		RFORMANCE EVALUATION	61
	6.1	Simulation Setup	61
		6.1.1 Experimental Methodology	61
	<i>(</i> 2	6.1.2 Performance Metrics	61
	6.2	Simulation Results	62
		6.2.1 Non-Fading Channels	62
		6.2.1.1 Radio Environment Map Delay	62
		6.2.1.2 Secondary Network Throughput	63
		6.2.1.3 Primary Outage	64
		6.2.1.4 Spectrum Utilization	66
		6.2.1.5 Packing Factor	66
		6.2.2 Nakagami-m Fading Channel	67
		6.2.2.1 Secondary Network Throughput	68
		6.2.2.2 Primary Outage	69
		6.2.2.3 Spectrum Utilization	
		6.2.3 Effect of the Number of Primary Networks	71
		6.2.4 Effect of the Fusion Rule	74
	6.3	Summary	76
7	CO	NCLUSION AND FUTURE RESEARCH DIRECTIONS	77
	7.1	Conclusions	77
	7.2	Future Work	78
		7.2.1 $(SC)^2$ in Vehicle-to-Vehicle Communication	78
		7.2.2 Upper and Lower Bounds	79
		7.2.3 Machine learning	79
Re	eferen	ces	80

List of Tables

2.1	MAC sublayer parameters in the IEEE 802.11p standard	12
3.1	Highway level of services	32
5.1	IEEE 802.11p parameters	53
6.1	System parameters	62

List of Figures

1.1 1.2	Vehicular network architecture	
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	Channel allocation in IEEE 802.11p Prioritization mechanism inside a single node Frame structure of IEEE 802.11p based CR-VANETs protocols Spectrum exploration in cognitive radio Spectrum exploitation in cognitive radios Receiver uncertainty, multi-path, shadowing and fading Non-Cooperative spectrum sensing Block diagram of energy detection Block diagram of matching filter detection	11 13 14 14 18 19 20 21 21 23 23
3.1 3.2	System model	33 36
4.1 4.2 4.3 4.4	Frame structure of different CR-VANETs approaches	39 41 42 43
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Collision probability for $(SC)^2$ with CW=32 Collision probability for $(SC)^2$ with CW=64 Collision probability for IEEE 802.11p based protocols Analytic vs. simulated secondary throughput	52 54
6.1 6.2	REM delay vs. the vehicular density	63 64
6.3 6.4		65
6.5	Packing factor vs. PN activity pattern for 50 and 100 vehicles per segment	67

6.6	Secondary throughput versus PN activity pattern for 100 vehicles per	
	segment under a Nakagami-m fading, m=3	68
6.7	Primary outages vs. PN activity pattern for 100 vehicles per segment	
	under a Nakagami-m fading, m=3	70
6.8	Spectrum utilization vs. vehicular density for 50% PN activity pattern	
	under a Nakagami-m fading, m=3	70
6.9	Primary outage vs. vehicular density for 50% PN activity pattern under a	
	Nakagami-m fading, m=3	71
6.10	REM delay vs. number of primary network for different vehicular density	72
6.11	PN outage vs. different number of channels under a Nakagami-m fading,	
	m=3	73
6.12	Secondary throughput vs. PN activity pattern for different number of	
	channels under a Nakagami-m fading, m=3, CW=32	73
6.13	Secondary throughput vs. PN activity pattern for different number of	
	channels under a Nakagami-m fading, m=3, CW=64	74
6.14	Number of correct detections for different vehicular densities under a	
	Nakagami-m fading, m=3	75
6.15	Performance of the conventional IEEE 802.11p for hard fusion rules under	
	a Nakagami-m fading, m=3	75

List of Abbreviations

1G 1st Generation

2G **2nd** Generation

3G 3rd Generation

4G 4th Generation

AC Access Categories

AC_BE Access Categories- Best Effort

AC_BK Access Categories- Background

AC_VO Access Categories- Voice

AC_VI Access Categories- Video

ADC Analog to **D**igital Converter

AIFS Arbitrary Inter-Frame Spacing

AIFSN Arbitrary Inter-Frame Spacing Number

AODV Ad-Hoc On Demand Distance Vector

ANPR Automatic Number Plate Recognition

AU AApplication Unit

ASIRD Association for Safe International Road Drive

AWGN Additive White Gaussian Noise

argmax Arguments of Maxima

argmix Arguments of Minima

BP Belief Propagation

CCH Control Channel

CCCH Common Control Channel

CH Cluster Head

CoVANET Cognitive Vehicular Ad-hoc Networks

Cog-V2V Cognitive Vehicular-to-Vehicular

CR Cognitive Radio

CR-VANET Cognitive Radio- Vehicular Ad-hoc Networks

CSMA/CA Carrier Sensing Multiple Access/ Collision Avoidance

CW Contention Window

DCF Distributed Coordination Function

DIFS DCF Inter-Frame Space

DSA Dynamic Spectrum Access

DSR Dynamic Source Routing

DSRC Dedicated Short Range Communication

DTN Delay-Tolerant Networking

EDCA Enhanced Distributed Channel Access

FC Fusion Center

FCC Federal Communication Commission

FFT Fast Fourier Transform

FIFO First-In-First-Out

GPS Global Positioning System

GSM Global System for Mobile-communication

GNSS Global Navigation Satellite System

HCM Highway Capacity Manual

IEEE Institute of Electrical and Electronics Engineers

IFS Inter-Frame Spacing

ISM Industrial, Scientific and Medical

ITS Intelligent Transport System

LOS Line Of Sight

LTE Long Term EEvolution

MAC Medium Access Control

MLR Maximum Likelihood Ratio

NHTSA National Highway Traffic Safety Administration

OBU On Board Unit

OFDM Orthogonal Frequency Division Multiplexing

OSA Opportunistic Spectrum Access

PCF Point Coordination Function

PDF Probability Density Function

PN Primary Network

PU Primary User

PHY Physical

QoS Quality of Services

REM Radio Environment Map

RSU Road Side Unit

SCH Services Channels

 $(SC)^2$ Single Channel Slotted Contention

SIFS Short Inter-Frame Spacing

SIO Sense-In-Order

SNR Signal to Noise Ratio

SU Secondary User

TORA Temporally-Ordered Routing Algorithm

TXOP Transmission Opportunities