

Water Purification from Organic Waste Using Nanomodified Natural Polymers

A Thesis
Submitted for Faculty of Science
In partial fulfillment for requirements
of the degree of Master of Science in Biophysics

By

Ahmed Mohammed Bayoumy Mohammed

B.Sc. in Biophysics (2012) Faculty of Science - Ain Shams University

Supervised by

Prof. Dr. El-Sayed Mahmoud El-Sayed

Prof. of Biophysics, Faculty of Science, Ain Shams University

Prof. Dr. Medhat Ahmed Ibrahim

Prof. of Spectroscopy, Spectroscopy Department, Physics Division, National Research Center (NRC)

Dr. Amina Yousef Omar

Lecturer of Biophysics, Faculty of Science, Ain Shams University

قسم الفيزياء كلية العلوم جامعة عين شمس

تنقية الماء من الملوثات العضوية باستخدام بوليمرات طبيعية معدلة بجزيئات النانو

رسالة مقدمة لكلية العلوم كجزء مكمل لمتطلبات الحصول على درجة الماجستير في الفيزياء الحيوية

مقدمة من

أحمد محمد بيومى محمد

الحاصل على بكالوريوس العلوم في الفيزياء الحيوية (2012) كلية العلوم – جامعة عين شمس

تحت اشر اف

أ.د. السيد محمود السيد

أستاذ الفيزياء الحيوية بقسم الفيزياء - كلية العلوم - جامعة عين شمس

أ.د. مدحت أحمد ابراهيم

أستاذ الاطياف بقسم الطيف - شعبة الفيزياء - المركز القومي للبحوث

د. أمينة يوسف عمر

مدرس الفيزياء الحيوية بقسم الفيزياء - كلية العلوم - جامعة عين شمس

(2018)

رسالة ماجستير في الفيزياء الحيوية اسم الطالب: أحمد محمد بيومي محمد

عنوان الرسالة: تنقية الماء من الملوثات العضوية باستخدام بوليمرات طبيعية معدلة بجزيئات النانو.

اسم الدرجة: الماجستير في العلوم (الفيزياء الحيوية)

التوقيع

المشرفون

أ.د. السيد محمود السيد

أستاذ الفيزياء الحيوية - كلية العلوم - جامعة عين شمس

أ.د. مدحت أحمد ابراهيم

أستاذ الطيف – قسم الطيف- المركز القومي للبحوث

د. أمينة يوسف عمر

مدرس الفيزياء الحيوية - كلية العلوم - جامعة عين شمس

لجنة الحكم:

أ.د. السيد محمود السيد

أستاذ الفيزياء الحيوية - كلية العلوم - جامعة عين شمس

أ.د. أوزيريس ونيس جرجس

أستاذ الفيزياء الحيوية - كلية العلوم - جامعة القاهرة

أ.د. عايدة عبد الكريم سلامة

أستاذ الفيزياء الحيوية - كلية العلوم - جامعة الأزهر (بنات)

تاريخ التسجيل: 09 /2015/11 تاريخ الإجازة: / / موافقة مجلس الكلية: / / تاريخ المنح: / / موافقة مجلس الجامعة: / /

Master Degree of Biophysics

Name: Ahmed Mohammed Bayoumy Mohammed

Title: Water purification from organic waste using nanomodified natural polymers

Degree: Master of Science (Biophysics)

Supervisors

Signature

Prof. Dr. El-Sayed Mahmoud El-Sayed

Prof. of Biophysics, Faculty of Science, Ain Shams University

Prof. Dr. Medhat Ahmed Ibrahim

Prof. of Spectroscopy, Spectroscopy Department, Physics Division, National Research Center (NRC)

Dr. Amina Yousef Omar

Lecturer of Biophysics, Faculty of Science, Ain Shams University

Arbitrators

Signature

Prof. Dr. El-Sayed Mahmoud El-Sayed

Prof. of Biophysics, Faculty of Science, Ain Shams University

Prof. Dr. Osoris Wanis Guirguis

Prof. of Biophysics, Faculty of Science, Cairo University

Prof. Dr. Aida Abdel-Karim Salama

Prof. of Biophysics, Faculty of Science, Al-Azhar University (Girls)

Contents

List of Figuresvi
List of Tablesx
Abbreviations and Acronymsxii
Abstractxiv
Chapter I: Introduction and Literature review1
1.1.Introduction 1
1.2.Literature Review
Chapter II: Theoretical Aspects32
2.1.Molecular Modeling and Computational Physics32
2.1.1.Molecular Mechanics
2.1.2.Electronic Structure Methods
i. Semiemprical Method38
ii. Ab Intio Method41
iii. Density Functional Theory (DFT)44
Beck's Three Parameter Correlation Hybrid Functional, Lee, Yang and Parr Exchange Functional (B3LYP) Method 50
2.1.3. Quantitative Structure Activity Relatioship (QSAR)
Calculations50

2.2. Removal of Organic Waste (Ibuprofen) from Aqueous Solutions	
using Biopolymers (Chitosan)	55
2.2.1. Pharmaceuticals and Personal Care Products (PPCPs)	56
Nonsteroidal Antiinflammatory Drugs (NSAIDs)	58
2.2.2. Emerging of PPCPs into Water	63
2.2.3. Occurrence of PPCPs in Water	66
2.2.4. Hazards of PPCPs	68
2.2.5. Removal of PPCPs (Ibuprofen) Strategies	70
i. Conventional Biological Methods	.71
1. Activated Sludge (AS)	71
2. Membrane Filtration	73
ii. Advanced Oxidation Process (AOPs)	74
1. Ozonation	76
2. Photolysis	78
3. Photocatalytic Degradation using Titania	79
iii. PPCPs Adsorption Processes	82
1. Adsorption using Activated Carbon	86
2. Adsorption using Natural Polymers	89
Natural Polysaccharides	92
Chitosan Biopolymer	.96

2.3.Methods of Analysis and Characterization	13
2.3.1. Structural Analysis	4
i. Infrared Analysis11	l 4
ii. Energy Dispersive X-rays Analysis (EDX)11	.7
2.3.2. Morphological Scanning Electron Microscopy (SEM)11	18
2.3.3. Biophysical Swelling Studies	18
Chapter III: Materials and Methods12	20
3.1.Molecular Modeling and Simulation	20
3.1.1.Geometrical Optimization	22
3.1.2.Electronic and Thermodynamic Properties	23
3.1.3. Vibrational IR Spectra Analysis	23
3.1.4.Quantitative Structure Activity Relatioship (QSAR)	24
3.2.Removal of Ibuprofen using Chitosan and Chitosan Modified with	
Silica Nanoparticles Microspheres from Aqueous Solution12	24
3.2.1.Materials and Tools	24
3.2.2.Synthesis of Chitosan and Chitosan Modified with Silica	
Nanoparticles Microspheres	25
3.2.3.Characterizzation Instruments	27
i. Fourier Transform Infrared (FTIR) Spectrophotometry12	27
ii. Energy Dispersive X-rays (EDX)12	28

iii. Scanning Electron Microscopy (SEM)12	8
iv. Biophysical Swelling Studies	8
3.2.4.Equilibrium Adsorption Experiments	9
i. Effect of Contact Time12	9
ii. Effect of Solution pH130)
iii. Effect of Adsorbent Type130	0
Chapter IV: Results and Disscusion13	1
4.1. Molecular Modeling and Simulation	1
4.1.1. Building Model Molecules	2
4.1.2. Geometrical Optimization using Semiemprical Method 14	1
i. Structures Optimization and QSAR Descriptors14	1
ii. Thermodynamical Parameters15	0
iii. Vibrational Spectra16	2
4.1.3. Geometry Optimization using DFT Method 16	4
i. Structures Optimization	5
ii. Geometrical Parameters	9
iii. Thermodynamical Parameters	1
iv. Vibrational IR Spectra	4

4.2. Removal of Ibuprofen from Aqueous Solutions using Chitosan and Chitosan Modified with Silica Nanoparticles Microspheres
4.2.1. Characterization of Microsphere Samples
4.2.2. Equilibrium Adsorption Mechanisms
Conclusion
References194

List of Figures

Figure	Caption	Page
2.1	Schematic representation illustrates the relationships	
	between different quantum mechanical calculation	44
	methods (Ramachandran et al. 2008).	
2.2	Chemical structure of ibuprofen (IBP) compound	61
4.4	(from Georgaki et al., 2014).	01
	Routes of emerging PPCPs into various types of	
2.3	water (from Amouzgar and Salamatinia 2015,	65
	Heberer 2002)	
	Events of producing free radicals during TiO ₂	
2.4	photocatalytic oxidation process (from Georgaki et	82
	al., 2014)	
2.5	Chemical structure of a. chitin and b. chitosan	97
2,3	biopolymers (from Tanase et al., 2014)	71
	Structure of a. glucosamine (monomer of chitosan)	
2.6	and b. glucose (monomer of cellulose). (From Pillai	99
	et al., 2009).	
2.7	Molecular vibrational modes; stretching (symmetric	
	and asymmetric) and bending modes including in	117
	phase bending (scissoring and rocking) and out of	117
	phase bending (twisting and wagging).	
4.1	Molecular model molecules of a. chitosan monomer	134
	(Cs), b. chitosan four units (4Cs) and c. ibuprofen	134

	molecule (IBP) optimized at both PM6 semiemprical	
	calculation and DFT at B3LYP/6-311G(d,p).	
	[C in grey, H in white grey, O in red and N in blue]	
	The five interaction probabilities of Cs and IBP in the	
	water absence named a. first (P ₁), b. second (P ₂), c.	
4.2	third (P ₃), d. fourth (P ₄) and e. fifth (P ₅) interaction	138
	possibilities optimized at both PM6 semiemprical	
	method and DFT at B3LYP.	
	The five interaction probabilities of Cs and IBP in the	
4.2	water presence named a. first (P`1), b. second (P`2), c.	1.41
4.3	third (P ³), d. fourth (P ⁴) and e. fifth (P ⁵) interaction	141
	possibilities optimized at PM6 semiemprical method.	
	Calculated heat of formation (HF) for a. 4Cs, Cs and	
	IBP, b. their proposed interactions in the water	
4.4	absence denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and c. their	155
	proposed interactions in the water presence denoted	
	as P ¹ , P ² , P ³ , P ⁴ and P ⁵ calculated at PM6.	
	Calculated heat capacity (HC) for a. 4Cs, Cs and IBP,	
	b. their proposed interactions in the water absence	
4.5	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and c. their proposed	156
	interactions in the water presence denoted as P ₁ , P ₂ ,	
	P' ₃ , P' ₄ and P' ₅ calculated at PM6.	
	Calculated enthalpy (En) for a. 4Cs, Cs and IBP, b.	
4.6	their proposed interactions in the water absence	158
	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and c. their proposed	

	interactions in the water presence denoted as P'1, P'2,	
	P' ₃ , P' ₄ and P' ₅ calculated at PM6.	
	Calculated entropy (ET) for a. 4Cs, Cs and IBP, b.	
	their proposed interactions in the water absence	
4.7	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and c. their proposed	160
	interactions in the water presence denoted as P`1, P`2,	
	P ₃ , P ₄ and P ₅ calculated at PM6.	
	Calculated free energy (FE) for a. 4Cs, Cs and IBP,	
	b. their proposed interactions in the water absence	
4.8	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and c. their proposed	162
	interactions in the water presence denoted as P`1, P`2,	
	P ₃ , P ₄ and P ₅ calculated at PM6.	
	Calculated IR spectra for 4Cs, Cs and IBP, their	
	proposed interactions in the water absence denoted as	
4.9	P_1, P_2, P_3, P_4 and P_5 and also in the water presence that	163
	denoted as P'1, P'2, P'3, P'4 and P'5 using PM6	
	semiemprical calculation.	
	The optimized interaction sites of interacting chitosan	
4.10	monomer (Cs) (at right) and ibuprofen (IBP)	170
4.10	molecule (at left) for a. the OHHO P_2 and b. the	170
	NHHO P ₄ probabilities.	
	Calculated IR spectra for 4Cs, Cs and IBP, their	
4.11	proposed interactions in the water absence denoted as	175
	P ₁ , P ₂ , P ₃ , P ₄ and P ₅ using B3LYP method.	
4.12	a. FTIR spectra of 2% Cs microspheres (Cs exp.)	179
4.14	versus the calculated IR spectra of 4Cs using	117

	B3LYP method (Cs theo.), b. FTIR spectra of	
	ibuprofen powder (IBP exp.) versus the calculated	
	IR spectra of IBP molecule using DFT at B3LYP	
	method (IBP theo.).	
4.13	FTIR spectra of chitosan (Cs), silica and	181
7.13	chitosansilica (Cs/Silica) microspheres.	101
	SEM and EDX analyses of chitosan microspheres	
4.14	before sorbing ibuprofen (a) and after mixed with it	183
	for 24H (b).	
	SEM and EDX analyses of chitosansilica	
4.15	microspheres before sorbing ibuprofen (a) and after	184
	mixed with it for 24H (b).	
	FTIR spectra of Cs before sorbing IBP and Cs after	
416	mixing with it for 5min. (5m), 10min. (10m), 30min.	100
4.16	(30m), 60min. (60m), 90min. (90m) and 24hr (24H) at	189
	pH 5.0.	
	FTIR spectra of CS before sorbing IBP and CS after	
4.17	mixing with it for 5min. (5m), 10min. (10m), 30min.	190
4.17	(30m), 60min. (60m), 90min. (90m) and 24hr (24H)	190
	at pH 5.0.	
4.18	FTIR spectra of Cs before sorbing IBP and Cs after	
	mixing with it for 5min. (5m), 10min. (10m), 30min.	101
	(30m), 60min. (60m), 90min. (90m) and 24hr (24H)	191
	at pH 10.0.	

List of Tables

Table	Caption	Page
2.1	List of the common polysaccharides and their	
	sources (obtained from Olatunji, 2015, Olatunji et	94
	al., 2014, Brostow, 2010, Abdelfadeel, 2012).	
3.1	Codes and composition of the prepared microsphere	127
3.1	samples.	127
	Calculated physical, electronic and QSAR properties	
	of 4Cs, Cs and IBP, their proposed interactions in	
4.1	the water absence denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and	144
	also in the water presence that denoted as P ₁ , P ₂ , P ₃ ,	
	P ₄ and P ₅ using PM6 semiemprical calculation.	
	Net atomic charges of the active sites of Cs and IBP,	
	their proposed interactions in the water absence	
4.2	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and also in the water	149
	presence that denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅	
	calculated at PM6 semiemprical level.	
4.3	Calculated thermal properties for 4Cs, Cs and IBP,	
	their proposed interactions in the water absence	
	denoted as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ and also in the water	153
	presence that denoted as P'1, P'2, P'3, P'4 and P'5	
	calculated at PM6 semiemprical level at 298 K.	
4.4	Calculated physical and electronic properties of 4Cs,	166
4.4	Cs and IBP and their proposed interactions in the	166

	water absence denoted as P_1 , P_2 , P_3 , P_4 and P_5	
	calculated at B3LYP/6-311G(d,p) DFT level.	
	Calculated geometrical parameters involving bond	
4.5	lengths (L) and bond angles (A) for Cs, IBP and their	172
	most probable interactions denoted as P_2 and P_4	1/2
	calculated using DFT at B3LYP/6-311G(d,p).	
	Calculated entropy (S), heat capacity (CV) and	
	thermal energy (E) for 4Cs, Cs and IBP and their	
4.6	proposed interactions in the water absence denoted	174
	as P ₁ , P ₂ , P ₃ , P ₄ and P ₅ calculated using DFT at	
	B3LYP/6-311G(d,p) at 298 K.	
	Elemental Percentage of pristine chitosan beads	
4.7	(Cs) and IBP sorbed chitosan beads obtained by	183
	EDX analysis.	
	Elemental Percentage of chitosansilica beads (CS)	
4.8	and IBP sorbed chitosansilica beads obtained by	184
	EDX analysis.	
4.9	Swelling percentage (%S) of Cs and CS sample	186
	microspheres after 0.5hr, 1.0hr, 1.5hr and 24hr.	100
	Uptake percentage % of IBP using Cs and CS beads	
4.10	after 5min., 10min., 30min., 60min., 90min. and	100
	1440 min. (24H) at both pH 5.0 and pH 10.0 for Cs	189
	and pH 5.0 for CS.	