EFFICIENCY AND BEHAVIOR OF CERTAIN PESTICIDES ON KEY PESTS INFESTING VEGETABLE CROPS UNDER DIFFERENT CLIMATIC CONDITIONS

By

BADIAA BADR MOHAMED ABD EL-AZIZ

B.Sc. Agricultural Sciences (Plant Protection), Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

MASTER OF SCIENCES in

Agricultural Sciences (Pesticides)

Department of Plant Protection
Faculty of Agriculture
Ain Shams University

Approval Sheet

EFFICIENCY AND BEHAVIOR OF CERTAIN PESTICIDES ON KEY PESTS INFESTING VEGETABLE CROPS UNDER DIFFERENT CLIMATIC CONDITIONS

By

BADIAA BADR MOHAMED ABD EL-AZIZ

B. Sc. Agricultural Sciences (Plant Protection), Ain Shams University, 2009

This thesis for M.Sc. degree has been approved by:

Dr. Abd El-Latif Abdo Ramadan Helalia	•••••
Prof. of Pesticides, Faculty of Agricultu	re, Al-Azhar University
Dr. Mohamed Salem Abd El-Wahed	•••••
Prof. Emeritus of Economic Entomolog	y, Faculty of Agriculture,
Ain Shams University	
Dr. Youssef Ezz El-Din Youssef Abdallah	
Prof. of Economic Entomology, Faculty	y of Agriculture, Ain Shams
University	
Dr. Said Abd El-Latif Dahrog	
Prof. Emeritus of Pesticides Chemistry	and Toxicology, Department
of Plant Protection, Faculty of Agriculty	ure, Ain Shams University

Date of Examination: 17 / 3 / 2018

EFFICIENCY AND BEHAVIOR OF CERTAIN PESTICIDES ON KEY PESTS INFESTING VEGETABLE CROPS UNDER DIFFERENT CLIMATIC CONDITIONS

By

BADIAA BADR MOHAMED ABD EL-AZIZ

B.Sc. Agricultural Sciences (Plant Protection), Ain Shams University, 2009

Under the supervision of:

Dr. Said Abd El-Latif Dahrog

Prof. Emeritus of Pesticides Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Youssef Ezz El-Din Youssef Abdallah

Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Samir Mahmoud Mohamed Saleh

Senior Researcher, Agricultural Meteorology Department, Center laboratory of climatic Agriculture, Agricultural Research Center

ABSTRACT

Badiaa Badr Mohamed Abd El-Aziz: Efficiency of Certain Insecticides Against Nymphs of *Bemisia tabaci* (Gennadius) Infesting Cucumber Cultivars under Different Climatic Conditions, Unpublished M.Sc. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2018.

The object of the present study is to investigate the effect of certain weather conditions on the impact of three insecticides used for the control of the cotton whitefly, Bemisia tabaci (Gennadius) nymphs on five cucumber cultivarsfor two summer and autumn seasons in 2015 and 2016 under unheated multi span plastic house and under open field conditions... The aims of the plastic house experiment and open field experiment were to investigate the impact of certain climatic conditions (Temperature (C^o), Relative humidity (%) on different insecticides efficiencies used for whitefly control compared to untreated check (without any insecticide application) as well as the effect of climatic conditions on the peak of white fly during the studding season. The obtained results indicated that thiamethoxam insecticide recorded significantly the lowest nymph count on cucumber plants, followed by dinotefuran, However Bernastar was the highest significantly insecticide counts all over the spray tested times. This result was true after 1, 3, 7 and 10 days after spraying. Tested pesticides were more efficiency in reducing number of nymphs during autumn seasons compared to summer seasons.in addition, similar impact was found in relation between seasons of test (time during the year) and peak of white fly during the studying season. For the changes in the population density of B. tabaci nymphs infesting cucumber at Qalyubyia Governorate it was found that the three tested weather factors (maximum and minimum air temperature & average relative humidity) were responsible, as a group, to one week earlier. The explained variance was 49.9% in 2015 and 36.1% in 2016. The variance ratio was 3.33 and 2.32. These values were hardly significant during summer seasons and the three

weather factors one week earlier were also highly responsible for the changes in the population density of *B. tabaci* nymphs infesting cucumber. The explained variance value in 2015 was 57.5%. In 2016, this value was 78%. The corresponding variance ratios were 4.16 and 9.51. The first value was significant at 5% level of probability and the other was highly significant and 1% of probabilityduring autumn seasons.

Key words: Climatic conditions, White fly, Thiamethoxam, Dinotefuran, Bernastar.

ACKNOWLEDGMENT

First of all, my prayerful gratitude should be submitted to the merciful **Allah** whose help I always seek and without his willing I will achieve nothing.

I would like to express my appreciation and respect to **Dr. Sayed AbdEl-atif Dahrog**, Professor of Pesticides Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his valuable supervision, great help, suggestion and planning the present points of research, constructive criticism and critical reading of the main script and helpful guidance I am extremely grateful.

I would like also to express my gratitude appreciation and full respect to **Dr. Youssef Ezz El-Din Youssef**, Professor of Economic Entomology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University for his kind unfailing help through this work, advice and encouragement in carrying out this work.

I would like to express my deep gratitude and appreciation to **Dr. Samir Mahmoud Mohamed**, Senior Researcher of Bioassay, Central Laboratory of Agricultural Climatic for his continuous encouragement, advising, humility and his great role in interpretation of the obtained results.

Finally many thanks for everyone helped me in this work

CONTENT

	Page
LIST OF TABLES	V
LIST OF FIGUERS	XIII
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
1- The effect of climatic conditions	3
1.1.Agriculture	3
1.2 Pesticides	3
1.3. White fly	8
2. The effect of the Neonicotinoids on the whitefly	13
2.1.Neonicotinoids	13
2.2.Effect of the Neonicotinoids on the whitefly	14
3. Bio-pesticide	17
III. MATERIAL AND METHODS	21
1.Plant materials	21
1.1.Plastic house experiment	21
1.2.Open field experiment	22
2. The insecticides treatments	22
2.1.Dinotefuran 20%	22
Trade name	22
Structural formula	22
The mode of action	22
2.2. Thiamethoxam	23
Trade name	23
Structural formula:	23
The mode of action	23
2.3. BERNA STAR	24
Structural formula	24
The mode of action	24
3 Cultivation seasons	24

	Page
3.1.Cucumber hybrids	25
3.2. The cultivation preparation of plastic house experiment	25
3.3.The open field treatments	25
3.4.Cultivation seasons	25
3.5.Cucumber varieties	25
3.6.The cultivation preparation	26
4. Insecticides application methods	26
5. Experimental design	26
6. White fly records	26
7. Microclimate measurements	27
8. Statistical analysis	27
1V-RESULTS AND DISCUSSION	28
1- Ecological studies	28
1.1.Population dynamics of <i>Bemisia tabaci</i> (Genn.) infesting	
different cucumber cultivars during the two growing seasons	
2015 and 2016	28
1.1.1. During summer season 2015	28
1.1.2. During summer season 2016	28
1.1.3. During autumn season 2015	30
1.1.4. During autumn season 2016	30
1-2. Effect of certain weather factors on the population density	
of Bemisia tabaci (Genn.) infesting different cucumber cultivars	
during the two cucumber growing seasons during 2015 and	
2016.	35
1.2.1. During summer seasons	36
Effect of minimum temperature	36
Effect of maximum temperature	36
Effect of mean percentage of relative humidity	36
1.2.2. During autumn seasons	37
Effect of maximum temperature	38

	Page
Effect of mean percentage of relative humidity	38
1.3. The combined effects of the three tested weather factors	39
1.3.1. During summer seasons	39
1.3.2. During autumn seasons	39
2. Effectiveness of the three tested pesticides against Bemisia	
tabaci nymphs inhabiting cucumber plants during two	
growing seasons during two years	41
2.1. During summer season 2015	41
2.1.1. Kuc cultivar	41
2.1.2. Wafer f1 cultivar	45
2.1.3. Beta-alfa cultivar	50
2.1.4. Hesham cultivar	55
2.1.5. Barkoda cultivar	60
2.2. During Summer season 2016	65
2.2.1. Kuc cultivar	65
2.2.2. Wafer f1 cultivar	70
2.2.3. Beta-alfa cultivar	75
2.2.4. Hesham cultivar	80
2.2.5. Barkoda cultivar	85
2.3. During autumn season 2015	91
2.3.1. Kuc cultivar	91
2.3.2. Wafer f1 cultivar	96
2.3.3. Beta-alfa cultivar	101
2.3.4. Hesham cultivar	106
2.3.5. Barkoda cultivar	111
2.4. During autumn season 2016	116
2.4.1. Kuc cultivar	116
2.4.2.Wafer f1 cultivar	121
2.4.3. Beta-alfa cultivar	126
2.4.4. Hesham cultivar	131
2.4.5. Barkoda cultivar	136

	Page
3. Results of statistical analysis of the relationship between	
weather factors and the efficiency of the pesticides	143
4. Climatic profile	149
4.1.Temperature profile	149
4.1.1. Autumn season 2015 and 2016	149
4.1.2. Summer season 2015 and 2016	149
4.2.Relative humidity profile	
4.2.1. Autumn seasons 2015 and 2016	150
4.2.2. Summer seasons 2015 and 2016	150
V-SUMMARY	155
VI-REFRENCES	
ARARIC SUMMERY	

LIST OF TABLES

Table No.		Page
1	Physical and chemical properties of Dinotefuran	23
2	Physical and chemical properties of Thiamethoxam	24
3	Population density of Bemisia tabaci nymphs on	
	cucumber leaves of five different cultivars	
	transplanted on the first week of March 2015	29
4	Population density of Bemisia tabaci nymphs on	
	cucumber leaves of five different cultivars	
	transplanted on the first week of March 2016	31
5	Population density of Bemisia tabaci nymphs on	
	cucumber leaves of five different cultivars	
	transplanted on the first week of September 2015	32
6	Population density of Bemisia tabaci nymphs on	
	cucumber leaves of five different cultivars	
	transplanted on the first week of September 2016	33
7	Results of statistical analysis of the relationship	
	between three weather factors, one week earlier, and	
	the population of <i>Bemisia tabaci</i> nymphs on cucumber	
	plants transplanted on the first week of March 2015	37
8	Results of statistical analysis of the relationship	
	between three weather factors, one week earlier, and	
	the population of Bemisia tabaci nymphs on cucumber	27
0	plants transplanted on the first week of March 2016	37
9	Results of statistical analysis of the relationship	
	between three weather factors, one week earlier, and the population of <i>Bemisia tabaci</i> nymphs on cucumber	
	plants transplanted on the first week of September	38
	2015	
10	Results of statistical analysis of the relationship	
- 0	between three weather factors, one week earlier, and	

Table No.		Page
	the population of <i>Bemisia tabaci</i> nymphs on cucumber plants transplanted on the first week of September	
	2016	39
11	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Kuc cultivar) transplanted on the	
12	second week of March 2015 Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Kuc cultivar)	42
	transplanted on the second week of March 2015,	44
13	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on	
	the second week of March 2015	47
14	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the second week of March 2015	49
15	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on the second week of March 2015	52
16	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on the second week of March	
	2015	54
17	Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Hesham cultivar)	
	transplanted on the second week of March 2015,	57
18	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Hesham cultivar) transplanted on the second week of March	
	2015	59

Table No.		Page
19	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Barkoda cultivar) transplanted on the second week of March 2015	62
20	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Barkoda cultivar) transplanted on the second week of March 2015	64
21	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Kuc cultivar) transplanted on the second week of March 2016	67
22	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Kuc cultivar)	
23	transplanted on the second week of March 2016, Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the second week of March 2016	69 72
24	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the second week of March 2016	74
25	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on the second week of March 2016	77
26	Reduction percentages of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on the second week of March 2016	79
27	2016 Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Hesham cultivar) transplanted on the second week of March 2016	82

Table No.		Page
28	Reduction percentages of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Hesham cultivar) transplanted on the second week of March	- ···g·
	2016	84
29	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Barkoda cultivar) transplanted on the second week of March 2016	87
30	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Barkoda cultivar) transplanted on the second week of March	
31	2016 Counts of Pawisia tahasi nyemba nonylation	89
31	Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Kuc cultivar) transplanted on the first week of September 2015	93
32	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Kuc cultivar)	,,,
33	transplanted on the first week of September 2015. Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Wafer f1 cultivar)	95
34	transplanted on the first week of September 2015, Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the first week of September	98
	2015	100
35	Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Beta-alfa cultivar)	100
36	transplanted on the first week of September 2015, Reduction percentages of <i>Bemisia tabaci</i> nymphs	103
30	population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on the first week of September	
	2015	105

Table No.		Page
37	Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Hesham cultivar) transplanted on the first week of September 2015	108
38	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Hesham cultivar) transplanted on the first week of September 2015	110
39	Counts of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Barkoda cultivar)	112
40	transplanted on the first week of September 2015, Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Barkoda cultivar) transplanted on the first week of September	113
4.4	2015,	115
41	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Kuc cultivar) transplanted on the first week of September 2016	118
42	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Kuc cultivar) transplanted on the first week of September 2016.	120
43	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the first week of September 2016	123
44	Reduction percentages of <i>Bemisia tabaci</i> nymphs population inhabiting cucumber plants (Wafer f1 cultivar) transplanted on the first week of September 2016	125
45	Counts of <i>Bemisia tabaci</i> nymph population inhabiting cucumber plants (Beta-alfa cultivar) transplanted on	
	the first week of September 2016.	128