Evaluation of the diagnostic role of non-coding RNA and Exosomal related gene association in lung cancer

Thesis

Submitted for Partial Fulfillment of the MD Degree
In Medical Biochemistry & Molecular Biology
By

Ghada Mohammed Gamal El-Din Ishak Ismail

M.B.B.Ch Supervised by

Prof. Dr. Fawzia Khalil Ibrahim

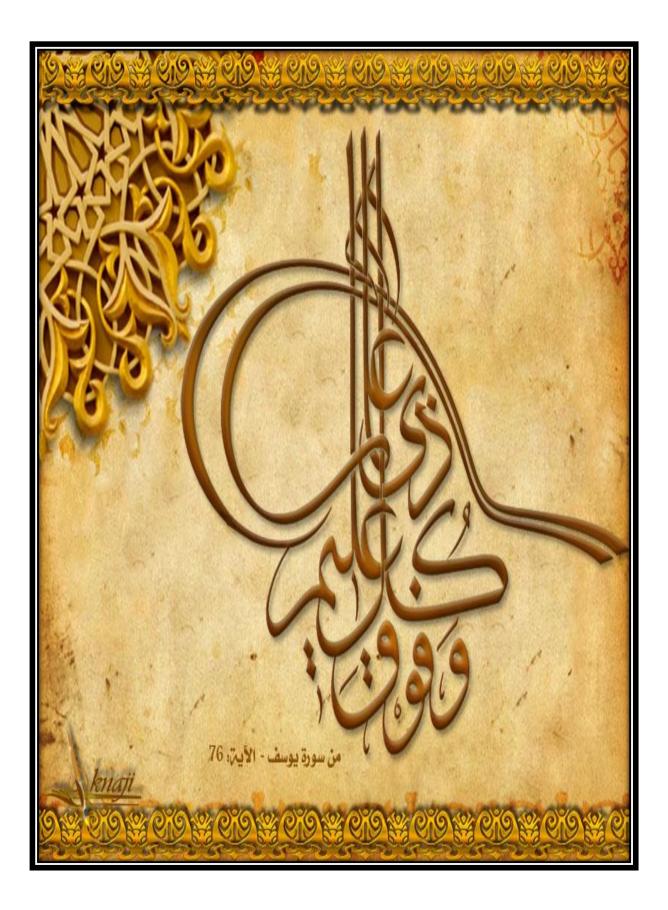
Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Prof. Dr. Hanan Hussein Shehata

Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Dr. Nehad Mohammed Osman

Associate Professor of Pulmonary Medicine Faculty of Medicine, Ain Shams University


Dr. Omar Mohammed Abdel-Rahman

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Marwa Ali Abd Elkhalek

Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

> Ain Shams University Faculty of medicine 2018

ACKNOWLDGMENT

First, and foremost, I feel always indebted to **Allah**, the most kind and the most merciful.

Thanks to **Allah** who lightened my path to become a humble student for a noble profession and granted me the ability to accomplish this work and support me in all my life.

I would like to express my deepest gratitude to **Prof. Dr. Fawzia Khalil**Ibrahim, Professor of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her great support and encouragement throughout the whole work. It is a great honor to work under her guidance and supervision.

My deepest appreciation and gratitude to **Prof. Dr. Hanan Hussein Shehata,** Professor of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her great support, encouragement and kind care throughout the whole work.

My deepest appreciation to **Dr. Marwa Ali,** Lecturer of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her kind help and support in practical work.

I would like to express my best regards and thanks to **Dr Nehad Osman** Assistant Professor of Pulmonary Medicine, Faculty of Medicine, Ain Shams University, for her kind help and support in selecting proper samples.

I would like to express my best regards and thanks to **Dr Omar Abd el Rahman** Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of
Medicine, Ain Shams University, for her kind help and support in selecting
proper samples.

Words can never express my sincere thanks to **My Family** for their continuous encouragement, generous support and love.

Ghada Mohamed Gamal El-Din Ishak

LIST of CONTENTS

CONTENTS	page
 LIST of CONTENTS 	I
 LIST of TABLES 	II
 LIST of FIGURES 	VI
 LIST of ABBREVIATIONS 	IX
 INTRODUCTION 	1
 AIM of THE WORK 	5
 REVIEW of LITERATURE 	
 Lung cancer 	6
 Exosomes 	17
• RAB27A	37
Long non-coding RNA	41
 PATIENTS AND METHODS 	53
• RESULTS	85
 DISCUSSION 	125
 SUMMARY 	139
 CONCLUSION 	143
 RECOMMENDATIONS 	144
REFERANCES	145
 ARABIC SUMMARY 	

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Symptoms & Signs Of Intrathoracic Spread	12
2	Signs and Symptoms of Lung Cancer Due to Metastasis	
3	Paraneoplastic Syndromes Associated With Lung Cancer.	
4	TNM staging of NSCLC 8th edition	15
5	EV-associated lncRNAs in cancers	52
6	Genomic DNA elimination reaction components	73
7	Reverse-transcription reaction components.	74
8	Components of the reaction mix.	77
9	The program of the real-time cycler.	78
10	The Age in Different Groups of the Study	86
11	Study population demographic and clinical characteristics	89
12	Differential expression of serum exosomal RAB27A mRNA expression among the study groups.	91

13	Comparison between the Malignant group and the COPD group as regards fold change RQ of serum exosomal RAB27A mRNA expression.	92
14	Comparison between the COPD group and the healthy control group as regards fold change RQ of serum exosomal RAB27A mRNA expression.	92
15	Comparison between the malignant group and the healthy control group as regards fold change RQ of serum exosomal RAB27A mRNA expression.	93
16	ROC curve analysis for serum exosomal RAB27A mRNA expression	94
17	Differential expression of serum exosomal Lnc-RNA-RP11-510M2.10among the study groups	96
18	Comparison between the malignant group and the COPD group as regards fold change RQ of serum exosomal Lnc- RNA-RP11-510M2.10 expression	97
19	Comparison between the COPD group and the healthy control group as regards fold change RQ of serum exosomal Lnc-RNA-RP11-510M2.10 expression	97
20	Comparison between the malignant group and the healthy control group as regards fold change RQ of serum exosomal Lnc-RNA-RP11-510M2.10expression.	98

21	ROC curve analysis for serum exosomal Lnc-RNA-RP11-510M2.10expression	99
22	Positivity rate of serum exosomal investigated biomarkers among the different study groups	100
23	Relation between serum exosomal RAB 27 A mRNA and LncRNA -RP11-510M2.10 and the different clinicopathological factors of the Malignant group	112
24	Relation between serum exosomal RAB27A mRNA and LncRNA-RP11-510M2.10 expressions and the different Clinicopathological factors among COPD group.	117
25	Correlation between serum exosomal RQ Lnc-RNA-RP11-510M2.10 and RQ RAB27A mRNA expression among all the study groups.	119
26	Performance characteristics of serum exosomal Investigated Biomarkers for Detection of Lung cancer.	120
27	Comparison between the Malignant and non-malignant groups as regard the fold changes (RQs) of BAL exosomal RAB27A mRNA expression.	121
28	Comparison between the Malignant and non-malignant groups as regard the fold changes (RQs) of BAL exosomal RAB27A mRNA expression.	122

29	Correlation between BAL exosomal Lnc-RNA-RP11-510M2.10 and RAB27A mRNA RQs.	123
30	Correlation between serum and BAL exosomal RAB27A mRNA RQs among the eight malignant patients	124
31	Correlation between serum and BAL exosomal Lnc-RNA-RP11-510M2.10 RQs among the eight malignant patients	124

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	The association between COPD and lung cancer	8
2	Schematic of protein and RNA transfer by Exosomes	22
3	Role of exosomes in tumorigenesis	27
4	A role for Rab27A and Rab27B and their effectors in exosome secretion.	40
5	IncRNAs Classification based on their genomic location.	44
6	Mechanisms of lncRNAs action	46
7	Schematic representation of cellular mechanisms involving lncRNAs	50
8	flow chart of working design	57
9	Snapshot shows the expression of RAB27A mRNA in Lung cancer from the human protein atlas database	60
10	Snapshot of the cancer genome atlas Database showing the involvement of Rab27A Exosomal gene in lung cancer.	61

11	Snapshot shows the chosen lncRNA related to RAB27A mRNA.	62
12	Snapshot of GeneCards Database showing the expression of Rab27A Exosomal gene in lung.	63
13	Snapshot of Reactome Database showing the involvement of Rab27A Exosomal gene in Exosomal secretion.	64
14	Snapshot of Incrnome long noncoding RNA knowledgebase showing the involvement of RP11-510M2.10 in epigenetic modification through histone methylation	64
15a	Phases of PCR amplification curve	79
15b	Melting curves (A) for RAB 27A (B) for LncRNA	80
16	ROC curve for prediction of Lung cancer using fold change of serum exosomal RAB27A mRNA expression.	94
17	ROC curve for prediction of Lung cancer using fold change of serum exosomal Lnc-RNA-RP11-510M2.10expression	99
18	Positivity rate of serum exosomal RAB27A mRNA among the different study groups	101

19	Positivity rate of serum exosomal Lnc-RNA-RP11-510M2.10 among the different study groups.	101
20	Amplification plot of RAB27A mRNA (yellow) and Lnc-RNA-RP11-510M2.10 (red) among the Malignant group.	102
21	Amplification plot of RAB27A mRNA (light green) and Lnc-RNA-RP11-510M2.10 (dark green) among the COPD group	103
22	Amplification plot of RAB27A mRNA (violet) and Lnc-RNA-RP11-510M2.10 (purple) among the Control group	103
23	BOXPLOT: Serum exosomal RAB27A mRNA and Lnc-RNA-RP11-510M2.10 as determined by qRT-PCR among the lung cancer, COPD, and healthy control groups	118
24	Amplification plot of BAL exosomal RAB27A mRNA (green) and Lnc-RNA-RP11-510M2.10 (blue) among the malignant group.	122

List of Abbreviations

Abbreviation	Meaning
ACCP	American College of Clinical Pharmacy
Alix	Anion Liquid Ion Exchange
ANRIL	Antisense Non-Coding RNA In The INK4 Locus
BAL	Bronchoalveolar Lavage
BMDCs	Bone-Marrow-Derived Cells
CD9	Clusters Of Differentiation
CDKN2B-AS1	CDKN2B Antisense RNA 1
cDNA	Complementary DNA
CEBPA	CCAAT Enhancer-Binding Protein Alpha
COPD	Chronic Obstructive Pulmonary Disease
CT	Computed Tomography
CXR	Chest X Ray
DEANR1	Definitive Endoderm-Associated Lncrna1
DEPC	Diethylpyrocarbonate
DNMTs	Dna Methyltransferases
ecCEBPA	Extra Coding CEBPA
EGF	Epidermal Growth Factor
EGFR	Epidermal Growth Factor Receptor
elncRNAs	Enhancer Long Non-Coding
EV	Exosomal Vesicle
Fas	First Apoptosis Signal
Fendrr	Fetal-Lethal Non-Coding Developmental
	Regulatory RNA
FGF	Fibroblastic Growth Factor
FOXA2	Forkhead Box A2
Foxf1	Forkhead Box F1

List of Abbreviations

GAS5	Growth Arrest Specific 5
H3K27me	Methylated Lysine 27 On Histone 3
HeLa	Immortal Cell Line(Cervical Cancer)
HoxA	Homeobox A Cluster
Hsp	Heat Shock Protein
kb	Kilo-Base Pair
KCNQ10T1	Antisense Transcript Of KCNQ1 Gene
KD	Knocked Down
KRAS	Kirsten Rat Sarcoma Virus.
lincRNAs	Long Intergenic Noncoding Rnas
MALAT1	Metastasis Associated Lung Adenocarcinoma
	Transcript 1
MCF-7	Michigan Cancer Foundation-7 (Breast Cancer
	Cell Line)
MEG3	Maternally Expressed Gene 3
MET	Mesenchymal To Epithelial Transition
miRNA	Microrna
MVBs	Multivesicular Bodies
MVEs	Multivesicular Endosomes
ncRNAs	Non-Coding RNA
ORF	Open Reading Frame
pancRNAs	Promoter-Associated Nornas
PCGEM1	Prostate-Specific Transcript (Non-Protein Coding)
	Prostate Cancer 2 Gene Expression Marker 1
PCR	Polymerase Chain Reaction
PET	Positron Emission Tomography
PI 3-kinase	Phosphatidylinositide 3-Kinase
Pnky	Long Intergenic Non-Protein Coding RNA PNKY
PRC2	Polycomb Repressive Complexes
PRNCR1	Prostate Cancer Associated Non-Coding RNA 1
PTBP1	Polypyrimidine Tract Binding Protein 1
RNA	Ribonucleic Acid

List of Abbreviations

rpm	Revolutions Per Minute
RT-PCR	Real-Time Polymerase Chain Reaction
SChLAP	Second Chromosome Locus Associated With
	Prostate-1
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide <i>Gel</i>
	Electrophoresis
siRNA	Silent Interfering RNA
Slac2b	Synaptotagmin-Like Protein Homolog Lacking C2
	Domains B
Slp4	Synaptotagmin-Like Protein 4
SMAD	SMA/MAD Homology
SNAREs	SNAP (Soluble NSF(N-Ethylmaleimide-Sensitive
	Factor) Attachment Protein) Re ceptor)
SVC	Superior Vena Cava
SWI/SNF	Switch/Sucrose Non-Fermentable
TIRF	Total Internal Reflection Fluorescensce
TNF	Tumor Necrosis Factor
tRNA	Transfer RNA
Tsg101	Tumor Susceptibility Gene 101 Protein
Wnt	Wingless-Type MMTV (Mouse Mammary Tumor
	Virus) Integration Site
Xi	Inactive X-Chromosomes In Females
Xist	X-Inactive Specific Transcript
Y RNA	Small Noncoding Rnas Fold Into Conserved Stem-
	Loop-Structure
μl	Microlitre

Introduction

Lung cancer is considered the highest cause of mortality among tumor pathologies worldwide (*Cazzoli et al.*, 2013). Most lung lesions are diagnosed at advanced stages with an overall 5-year survival rate of 15% (*Siegel et al.*, 2011).

There are no validated techniques for an early detection of pulmonary cancer lesions other than low-dose helical computed tomography scan. Unfortunately, this method has some negative effects. Furthermore, there are no serum/plasma biomarkers to determine whether a low-dose helical computerized tomogram should be performed in high-risk individuals (*Cazzoli et al.*, 2013). The identification of specific, sensitive and accurate tumor biomarkers that detect the presence of disease using noninvasive diagnostic procedures is a key part of cancer research.

It has been well known that tumor development is a multistage process to accumulate alterations at the genetic and/or epigenetic level which ultimately reprogramme a cell to undergo uncontrolled proliferation and metastasis (*Gao et al.*, 2014). The expression of initial mutations depends not only on the internal interaction between oncogenes but also on extracellular factors