

FUNCTIONAL MRI ANALYSIS FOR COMPUTER AIDED DIAGNOSIS OF MENTAL DISEASES

By **Ali Hamid Muthanna Algumaei**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and Systems

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

FUNCTIONAL MRI ANALYSIS FOR COMPUTER AIDED DIAGNOSIS OF MENTAL DISEASES

By Ali Hamid Muthanna Algumaei

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Biomedical Engineering and Systems**

Under the Supervision of

Prof. Dr. Ayman M. Eldeib

Associate Prof. Inas A. Yassine

Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

Associate Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

Assistant Prof. Muhammad A. Rushdi

Assistant Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2018

FUNCTIONAL MRI ANALYSIS FOR COMPUTER AIDED DIAGNOSIS OF MENTAL DISEASES

By **Ali Hamid Muthanna Algumaei**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Approved by the Examining Committee

Prof. Dr. Ayman M. Eldeib

(Thesis Main Advisor)

Professor of Biomedical Engineering, Faculty of Engineering, Cairo University

Associate Prof. Inas A. Yassine

(Advisor)

Associate Professor of Biomedical Engineering, Faculty of

Engineering, Cairo University

Prof.Dr. Ahmed Mohammed El-Bialy

(Internal Examiner)

Professor of Biomedical Engineering, Faculty of Engineering, Cairo University

Prof.Dr. Samia Abdul Raziq Mashali

(External Examiner)

Professor of Electrical Engineering, Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Ali Hamid Muthanna Al-Gumaei

Date of Birth: 06/01/1986 **Nationality:** Yemeni

E-mail: alihalgomae@gmail.com

Phone: +201120469618

Address: Saber Metwalley, Faisal, Giza

Registration Date: 1/10/2014 **Awarding Date:** —/—/2018 **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Prof. Dr. Ayman M. Eldeib Associate Prof. Inas A. Yassine

Assistant Prof. Muhammad A. Rushdi

Examiners:

Prof. Dr. Ayman M. Eldeib (Thesis Main Advisor)

Professor of Biomedical Engineering, Faculty of

Engineering, Cairo University

Associate Prof. Inas A. Yassine (Advisor)

Associate Professor of Biomedical Engineering, Faculty of Engineering, Cairo University

Prof.Dr. Ahmed Mohammed El-Bialy (Internal Examiner)

Professor of Biomedical Engineering, Faculty of

Engineering, Cairo University

Prof.Dr. Samia Abdul Raziq Mashali (External Examiner) Professor of Electrical Engineering, Electronics Research Institute

Title of Thesis:

Functional MRI Analysis for Computer Aided Diagnosis of Mental Diseases.

Key Words:

schizophrenia, Amplitude of Low-Frequency Fluctuations (ALFF), Regional Homogeneity (ReHo), Voxel Mirrored Homotopic Connectivity (VMHC), Support Vector Machine (SVM).

Summary:

Mental disorders, especially schizophrenia, are still challenging to diagnose. Nowadays, computer-aided diagnosis techniques have been developed to tackle this challenge. Data denoising and preprocessing were first applied, followed by the feature extraction. The extracted features were then reduced using the Principal Component Analysis (PCA), and the best discriminative features were selected using different feature selection algorithms such as the Fisher score and t-test. A Support Vector Machine (SVM) classifier was trained and tested on the COBRE dataset which contains 70 schizophrenic and 70 healthy subjects. The highest average accuracy of 98.57\% has been achieved.

Acknowledgements

First and foremost, praises and thanks to Allah, the Almighty, for his blessings throughout my research work to complete the research successfully and for taking care of me during this time and always.

I take great pleasure in expressing my profound sense of gratitude to my supervisors Prof. Ayman Eldeib, Associate Prof. Inas Yassine and Assistant Prof. Muhammad Rushdi, for their persistent and inspiring supervision. It would not have been possible to complete this work without their guidance encouragement, patience, suggestions, generosity and support.

My cordial thanks to the Faculty of Engineering, Cairo University. I would like to extend my sincerest thanks to all my friends for their support.

A very special gratitude is reserved for my family, my beloved parents, brothers and wife. I admit that any success in my life would not have been achieved without their love, care, continuous encouragement, and support.

Dedication

This thesis is dedicated to my parents, brothers, wife, sons (Mazen and Yazan) and my friends.

Contents

A	ckno	wledgements	i
D	edica	tion	ii
C	ontei	nts	iii
Li	\mathbf{st} of	Figures	vi
Li	\mathbf{st} of	Tables	xi
Li	\mathbf{st} of	Abbreviation	iii
\mathbf{A}	bstra	act	ΚV
1	Intr	roduction	1
	1.1	Contribution	1
	1.2	Thesis Contents	1
2	Me	dical Background and Related Studies	3
	2.1	Schizophrenia	3
	2.2	Functional Magnetic Resonance Imaging (fMRI)	4
		2.2.1 Introduction	4
		2.2.2 Resting-State fMRI	5
	2.3	Related Studies	6

3	Mat	terials	and Methods	9
	3.1	Introd	uction	9
	3.2	Datase	ets Description	9
	3.3	Data l	Preprocessing	10
		3.3.1	Slice-time Correction	12
		3.3.2	Realignment	12
		3.3.3	Co-registration	13
		3.3.4	Normalization	14
		3.3.5	Smoothing	15
	3.4	Restin	g-state functional activity measures	15
		3.4.1	Amplitude of Low Frequency Fluctuations (ALFF)	15
		3.4.2	Fractional Amplitude of Low Frequency Fluctuations (fALFF) 1	16
		3.4.3	Voxel-Mirrored Homotopic Connectivity (VMHC)	17
		3.4.4	Regional Homogeneity (ReHo)	19
	3.5	Dimen	sionality Reduction and Feature Selection	20
		3.5.1	Principal Component Analysis (PCA)	20
		3.5.2	Feature selection	20
			3.5.2.1 Fisher Score Algorithm	21
			3.5.2.2 Welch's t-test	21
			3.5.2.3 The Bhattacharyya's distance	22
			3.5.2.4 L0-Norm	22
			3.5.2.5 The Feature Selection Via Concave Minimization (FSV) . 2	23
			3.5.2.6 Wilcoxon Sum Rank Test	23
	3.6	Classif	\hat{c} acation	23
		3.6.1	Support Vector Machine (SVM)	24
	3.7	Evalua	ation Metrics	25
		3.7.1	Classification System Performance	25
		3.7.2	Receiver Operator Characteristic (ROC) Curve	26

CONTENTS

		3.7.3	Back Projection	27
4	Res	ults an	nd Discussion	29
	4.1	Result	s with PCA	29
		4.1.1	Classification Performance	29
		4.1.2	Receiver Operating Characteristic (ROC) Curve	32
		4.1.3	Localization of Brain Regions	34
	4.2	Result	s without PCA	39
		4.2.1	Classification Performance	39
		4.2.2	Receiver Operating Characteristic curve	40
		4.2.3	Localization of Brain Regions	41
5	Con	clusio	ns and Future Work	46
	5.1	Conclu	ision	46
	5.2	Future	e Work	46
	5.3	Public	ations	47
	5.4	Appen	dix I	48
		5.4.1	Result with PCA	48
	5.5	Appen	dix II	55
		5.5.1	Results without PCA	55
$R\epsilon$	efere	nces		62

List of Figures

3.1	Block diagram for the proposed classification system	10
3.2	Pipeline of the preprocessing steps	11
3.3	Slice timing correction using data shifting method (interpolation)	12
3.4	Rigid body transformation (a) image before 6 rigid body transformation.	
	(b) image after 3 rotation(x,y,z). (c) image after 3 translation(roll, pitch,	
	yaw)	13
3.5	Co-registration of (A) Functional image onto (B) Structural image	14
3.6	Normalization of 3 subject to standard template	14
3.7	Smoothing the normalized images	15
3.8	Schematic illustration of ALFF analysis. (A) The time course after preprocessis	ng.
	(B) Band-filtered (0.01 - 0.1 Hz) time course. (C) Power spectrum using	
	fast Fourier transformation. (D) Square root of the power spectrum between	
	0.01 and 0.1 Hz, i.e. ALFF	16
3.9	Schematic illustration of fALFF analysis. (a) The time series (without	
	filtering) from a typical voxel in the suprasellar cistern (SC) and the posterior	
	cingulate cortex (PCC). (b) The power in the SC is higher than that in PCC	
	at almost every frequency. (c) The ratio of the power at each frequency to	
	the integrate power of the entire frequency range indicates that the power	
	in the low-frequency range (0.01 - 0.1 Hz) is significantly suppressed in the	
	SC	17
3.10	Brain connectivity scheme	18

3.11	Examples of scatter diagrams with different values of correlation coefficient	
	ρ	19
3.12	ReHo clusters.	20
3.13	Principal Component Analysis system	21
3.14	Scheme represents nested-loop 10-fold cross-validation	24
3.15	SVM Classification	25
3.16	Receiver operator characteristic (ROC) curves. The performance of classifier	
	by ROC is poor (a), good (b), very good (c) and excellent (d)	27
4.1	ROC curves for schizophrenia classification using different feature combinations	3
	and ROC averaging techniques where the numbers in brackets denote the	
	Area Under the Curve (AUC): (a) Single features and threshold averaging.	
	(b) Single features and vertical averaging. (c) Pairwise features and threshold	
	averaging. (d) Pairwise features and vertical averaging. (e) Triple and	
	quadruple combinations of features and threshold averaging. (f) Triple and	
	quadruple combinations of features and vertical averaging	33
4.2	Localization of the areas in the AAL atlas. Circles represent the areas with	
	higher discrimination ability between healthy and schizophrenia groups	
	based on ReHo . Plot of this figure was created using BrainNet Viewer [1].	36
4.3	Localization of the areas in the AAL atlas. Circles represent the areas	
	with higher identification ability between healthy and schizophrenia groups	
	based on ALFF. Plot of this figure was created using BrainNet Viewer [1].	37
4.4	Localization of the areas in the AAL atlas. Circles represent the areas	
	with higher identification ability between healthy and schizophrenia groups	
	based on fALFF. Plot of this figure was created using BrainNet Viewer [1].	38
4.5	Localization of the areas in the AAL atlas. Circles represent the areas	
	with higher identification ability between healthy and schizophrenia groups	
	based on VMHC. Plot of this figure was created using BrainNet Viewer [1].	39

4.6	ROC curves for schizophrenia classification using different feature combinations	\mathbf{S}
	and ROC averaging techniques where the numbers in brackets denote the	
	Area Under the Curve (AUC): (a) Single features and threshold averaging.	
	(b) Single features and vertical averaging. (c) Pairwise features and threshold	
	averaging. (d) Pairwise features and vertical averaging. (e) Triple and	
	quadruple combinations of features and threshold averaging. (f) Triple and	
	quadruple combinations of features and vertical averaging	41
4.7	Localization of the areas in the AAL atlas. Circles the areas with higher	
	identification ability between healthy and schizophrenia groups based on	
	VMHC. Plot of this figure was created using BrainNet Viewer [1]	43
4.8	Localization of the areas in the AAL atlas. Circles the areas with higher	
	identification ability between healthy and schizophrenia groups based on	
	ALFF. Plot of this figure was created using BrainNet Viewer [1]	43
4.9	Localization of the areas in the AAL atlas. Circles the areas with higher	
	identification ability between healthy and schizophrenia groups based on	
	fALFF. Plot of this figure was created using BrainNet Viewer [1]	44
4.10	Localization of the areas in the AAL atlas. Circles the areas with higher	
	identification ability between healthy and schizophrenia groups based on	
	ReHo. Plot of this figure was created using BrainNet Viewer [1]	45
5.1	ROC curves for schizophrenia classification using single features and ROC	
	threshold averaging techniques: (a) ALFF. (b) fALFF. (c) ReHo. (d) VMHC.	48
5.2	ROC curves for schizophrenia classification using single features and ROC	
	vertical averaging techniques: (a) ALFF. (b) fALFF. (c) ReHo. (d) VMHC.	49
5.3	ROC curves for schizophrenia classification using pairwise features combination	ıs
	and ROC threshold averaging techniques: (a) ALFF & fALFF. (b) ALFF	
	& ReHo. (c) ALFF & VMHC. (d) fALFF & ReHo. (e) fALFF & VMHC	
	(f) ReHo & VMHC	50

5.4	ROC curves for schizophrenia classification using pairwise features combination	ıs
	and ROC vertical averaging techniques: (a) ALFF & fALFF. (b) ALFF &	
	ReHo. (c) ALFF & VMHC. (d) fALFF & ReHo. (e) fALFF & VMHC .	
	(f) ReHo & VMHC	51
5.5	ROC curves for schizophrenia classification using triple features combinations	
	and ROC threshold averaging techniques: (a) ALFF & fALFF & ReHo.	
	(b) ALFF & fALFF & VMHC. (c) ALFF & ReHo & VMHC. (d) fALFF	
	& ReHo & VMHC	52
5.6	ROC curves for schizophrenia classification using triple features combinations	
	and ROC vertical averaging techniques: (a) ALFF & fALFF & ReHo. (b)	
	ALFF & fALFF & VMHC. (c) ALFF & ReHo & VMHC. (d) fALFF &	
	ReHo & VMHC	53
5.7	ROC curves for schizophrenia classification using Quadruple features combinate	ion
	and ROC averaging techniques: (a) Quadruple combination of features and	
	threshold averaging. (b) Quadruple combination of features and vertical	
	averaging	54
5.8	ROC curves for schizophrenia classification using single features and ROC	
	threshold averaging techniques: (a) ALFF. (b) fALFF. (c) ReHo. (d) VMHC.	55
5.9	ROC curves for schizophrenia classification using single features and ROC	
	vertical averaging techniques: (a) ALFF. (b) fALFF. (c) ReHo. (d) VMHC.	56
5.10	ROC curves for schizophrenia classification using pairwise features combination	ıs
	and ROC threshold averaging techniques: (a) ALFF & fALFF. (b) ALFF	
	& ReHo. (c) ALFF & VMHC. (d) fALFF & ReHo. (e) fALFF & VMHC	
	. (f) ReHo & VMHC	57
5.11	ROC curves for schizophrenia classification using pairwise features combination	ns
	and ROC vertical averaging techniques: (a) ALFF & fALFF. (b) ALFF &	
	ReHo. (c) ALFF & VMHC. (d) fALFF & ReHo. (e) fALFF & VMHC .	
	(f) ReHo & VMHC	58

5.12	ROC curves for schizophrenia classification using triple features combinations
	and ROC threshold averaging techniques: (a) ALFF & fALFF & ReHo.
	(b) ALFF & fALFF & VMHC. (c) ALFF & ReHo & VMHC. (d) fALFF
	& ReHo & VMHC
5.13	ROC curves for schizophrenia classification using triple features combinations
	and ROC vertical averaging techniques: (a) ALFF & fALFF & ReHo. (b)
	ALFF & fALFF & VMHC. (c) ALFF & ReHo & VMHC. (d) fALFF &
	ReHo & VMHC
5.14	ROC curves for schizophrenia classification using Quadruple features combination
	and ROC averaging techniques: (a) Quadruple combination of features and
	threshold averaging. (b) Quadruple combination of features and vertical
	averaging

List of Tables

3.1	Summary of participant demographics in COBRE	11
4.1	Classification performance of feature selection algorithms	30
4.2	Classification performance using 4 types single features	30
4.3	Classification performance using different feature combinations before PCA.	31
4.4	Classification performance using different feature combinations after PCA.	32
4.5	Active regions using the ReHo activity measure: anatomical locations, peak	
	MNI coordinates, peak-values, and abbreviation of significant clusters for	
	the Rs-fMRI.	35
4.6	Active regions using the ALFF activity measure: anatomical locations,	
	peak MNI coordinates, peak-values, and abbreviation of significant clusters	
	for the Rs-fMRI	36
4.7	Active regions using the fALFF activity measure: anatomical locations,	
	peak MNI coordinates, peak-values, and abbreviation of significant clusters	
	for the Rs-fMRI	37
4.8	Active regions using the VMHC activity measure: anatomical locations,	
	peak MNI coordinates, peak-values, and abbreviation of significant clusters	
	for the Rs-fMRI	38
4.9	Classification performance of feature selection algorithms	40
4.10	Classification performance of using types single features and their combinations	. 40