Role of Laparoscopy in Treatment of Diaphragmatic Hernia in Adults: Prospective Study

Thesis

Submitted for Partial Fulfillment of Master Degree in General Surgery

By Ahmed Atef Al-Menawy

M.B.B.Ch.

Faculty of Medicine - Ain Shams University

Under Supervision of **Prof. Dr. Abd Al-Rahman Mohamed Al-maraghy**

Professor of General Surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Mahmoud Saad Farahat

Professor of General and Endocrine Surgery Faculty of Medicine- Ain Shams University

Dr. Ramy Mikhael Nageeb

Assistant Professor of General Surgery Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2018

First and foremost, Thanks are due to **ALLAH** the most merciful and the mightiest to whom I relate my success in achieving any work in my life.

I would like to express my sincere gratitude and deepest appreciation to **Prof. Dr. Abd Al-Rahman Mohamed Al-maraghy.** Professor of General Surgery,
Ain Shams University, for his kindness, precious advice,
continous encouragement and guidance throught out the
preparation of this work.

I am deeply greatfull to **Prof. Dr. Mahmoud Saad Farahat,** Professor of General and Endocrine Surgery, Ain Shams University for his guidance and help in this work.

I really express my gratitude to **Dr. Ramy Mikhael Nageeb,** Assistant Professor of General Surgery, Ain
Shams University, for his support, attention and
supervision throw out this work.

Finally no words can express the warmth of my feelings to **my family,** to whom I am forever indebted for their patience, support and help.

△ Ahmed Atef Al-Menawy

Contents

Subject	Page No.
List of Figures	I
List of Tables	V
List of Abbreviations	VI
Introduction	1
Aim of the Work	5
- Chapter (1): Anatomy & Embryology	7
- Chapter (2): Pathological Types of Diaphra	agmatic
Hernia	22
- Chapter (3): Diagnosis	38
- Chapter (4): Treatment	53
Patients and Methods	74
Results	91
Discussion	109
Summary	118
Conclusion	121
References	122
Arabic Summary	١١

List of Figures

Figure	Títle	Page
Fig. 1	Drawing (view from below) shows the	10
	large central tendon, which is formed by	
	the transverse septum	
Fig. 2	Normal lateral arcuate ligament. Coronal	11
Fig. 3	The under surface of diaphragm	14
Fig. 4	Nerve supply	16
Fig. 5	Inferior surface of diaphragm and	19
	foramina	
Fig. 6	CT image shows the location of the IVC	20
	hiatus	
Fig. 7	CT image shows the esophageal hiatus	20
Fig. 8	CT image shows the aortic hiatus	21
Fig. 9	Axial, coronal and CT images	24
Fig. 10	Gastroscopy – hiatal hernia type III, no	26
	esophageal varices and incompetent	
	cardia	
Fig. 11	X-ray of the chest – hiatal hernia type IV	26
	herniation of stomach and intestine in	
	thorax	
Fig. 12	Hiatal hernia type IV- intraoperative	27
	view large hiatal defect with herniation	
	of stomach omentum and intestine	
Fig. 13	Large Morgagni hernia involving the	28
	anterior right hemidiaphragm	
Fig. 14	CT scan of the chest	29
Fig. 15	Diaphragmatic atrophy due to	32
	polymyositis	

Figure	Títle	Page
Fig. 16	Coronal and saggital reconstruction	33
	images of the thoracic CT demonstrating	
	focal eventration of diaphragm with	
	intrathoracic herniation of fat content	
Fig. 17	Coronal CT image shows elevation of the	35
	left hemidiaphragm	
Fig. 18	Coronal CT image shows elevation and	36
	atrophy of the right hemidiaphragm	
Fig. 19	Diaphragmatic paralysis caused by	37
	invasion of the phrenic nerve by non-	
	small cell lung carcinoma	
Fig. 20	Photograph of a one-day-old infant with	38
	congenital diaphragmatic hernia	
Fig. 21	Use of US in detection of diaphragmatic	47
	hernia	
Fig. 22	CT scan revealing herniated stomach	49
	through a left BH	
Fig. 23	Role of CT in diaphragmatic hernia	50
	diagnose	
Fig. 24	Intraoperative appearance of	56
TI 0=	diaphragmatic hernia	- 0
Fig. 25	Use of an artificial pericardium patch in	58
TI 04	closure of diaphragmatic hernia	- 0
Fig. 26	Crural reinforcement with onlay	58
D: 05	placement of Acell MatriStem® graft	5 0
Fig. 27	Reinforcement with a 15 × 20-cm flexible composite mesh	59
Fig. 28	Laparoscopic view of reducing the	62
J	herniated stomach from the chest in a	
	patient with left BH	

Figure	Títle	Page
Fig. 29	Intra operative view	71
Fig. 30	Chest x-ray shows collapsed Lt lung,	77
	shifted mediastinum and elevated lt.	
	copula of diaphragm	
Fig. 31	Lateral chest x-ray showed bowel loops	78
	in chest	
Fig. 32	Abdominal erect showed picture of	78
	intestinal obstruction	
Fig. 33	CT chest showed herniated stomach in	80
	chest and collapsed lung	
Fig. 34	CT chest showed herniated stomach in	80
	chest and shifting of mediastinum to	
	other side	
Fig. 35	Cronal CT showed herniated gut in chest	81
Fig. 36	Barium study showed herniated colon in	82
	chest	
Fig. 37	Lt Boghdalek hernia	83
Fig. 38	Reduction of hernia content by	84
	laparoscopy	
Fig. 39	Herniated spleen, omentum	84
Fig. 40	Adhesions between hernia content and	84
	diaphragm	
Fig. 41	Bleeding during adhesolysis	85
Fig. 42	Herniated colon and omentum	85
Fig. 43	Reduction of the content	85
Fig. 44	Adhesolysis with harmonic scalpel	86
Fig. 45	Herniated left lobe of liver	86
Fig. 46	Adhesions between left lung and	86
	herniated left lobe of liver	

List of Figures

Figure	Títle	Page
Fig. 47	Adhesolysis with harmonic scalpel	87
Fig. 48	Left diaphragmatic defect	87
Fig. 49	Primary closure of diaphragmatic defect	87
Fig. 50	Content of diaphragmatic hernia	88
Fig. 51	Left diaphragmatic hernia defect	89
Fig. 52	Primary repair of hernia content using	89
	non absorbable sutures	
Fig. 53	Past history	92
Fig. 54	Complain	93
Fig. 55	Timing of presentation	94
Fig. 56	Pelviabdominal ultrasound	96
Fig. 57	Hernia contents	103
Fig. 58	Hospital stay	106
Fig. 59	Postoperative complications	108

List of Tables

Table	Títle	Page
Table 1	Past history	92
Table 2	Present history	93
Table 3	Timing of presentation	94
Table 4	Laboratory investigations	97
Table 5	Patient chest x-ray	98
Table 6	Pelviabdominal ultrasound	99
Table 7	CT finding	100
Table 8	Adhesions	102
Table 9	Hernia contents	102
Table 10	Intraoperative complications	104
Table 11	Hospital stay	105
Table 12	Postoperative complications	107

List of Abbreviations

Abb.	Full term
ABG	Arterial blood gas
ACS	Abdominal compartment syndrome
ВН	Bochdalek hernia
CBC	Complete blood count
CDH	Congenital diaphragmatic hernia
CT	Computed tomography
CXR	Chest X-ray
EMG	Electromyography
GERD	Gastroesophageal reflux disease
MIS	Minimally invasive surgery
MRI	Magnetic resonance imaging
MVCs	Motor vehicle crashes
NCS	Nerve conduction study

Introduction

The laparoscopic approach was firstly reported by Kuster *et al.* in 1992 for repair of Morgagni diaphragmatic hernia in a 67-year-old woman with symptoms of partial colon obstruction is described. The patient had a prompt and complete recovery with no evidence of recurrence one year after surgery (*Kuster et al.*, 1992).

Diaphragmatic hernia consists of a defect of the diaphragm, generally located on the left side that allows passage of the abdominal viscera into the thorax (*Tovar*, 2012).

The most common cause of acquired diaphragmatic disorders is trauma, either blunt or penetrating. Motor vehicle accidents are the leading cause of blunt diaphragmatic injury, whereas penetrating injuries result from gunshot or stab wounds (*Baloyiannis et al.*, 2011).

It is not feasible to estimate the occurrence of diaphragmatic hernia due to blunt abdominal trauma as a significant number of patients manifest late and some are diagnosed while being evaluated for other pathologies (*Kelly et al.*, 2008).

Penetrating injuries to the chest or abdomen also may injure the diaphragm. This specific injury is seen

commonly where penetrating trauma is prevalent (Melo et al., 2011).

Almost 88% of the patients presented with complications between 9 and 12 months. Left sided injuries occurred in 68.5% of the patients, 24.2% had right-sided rupture, and 1.5% had bilateral rupture. The most commonly herniated organs on the left side are the stomach (80%), omentum, small intestine, colon, and spleen (*Farooq et al., 2013*).

Diaphragmatic dysfunction can be classified as paralysis, weakness, or eventration. It is often initially suggested by diaphragmatic elevation at chest radiography (*Qureshi*, 2009).

However, the most common etiology is acquired, which is caused by phrenic nerve injury during a traumatic birth or thoracic surgery for the correction of congenital heart disease (*Camerano et al.*, 2014).

Congenital diaphragmatic hernia has been classified into the following different types: Eventeration of diaphragm, posterolateral hernia of Bochdalek (aka, BH), parasternal hernia of Morgagni-Larrey, pertioneopericardial hernia and the central tendon hernias (*Debergh and Fierens*, 2014).

The commonest congenital diaphragmatic hernia is bochdalek. Adult presentation, however, is rare. The incidence is reported to be 0.17% with the majority of hernias occurring on left side (*Somani et al.*, 2010).

Morgagni hernia is one kind of relatively rare congenital diaphragmatic hernias, which is asymptomatic and discovered incidentally in adulthood (*Aydin et al.*, 2014).

Most adults present with chronic atypical symptoms, such as chronic dyspnea, chest pain, recurrent chest infections, pleural effusion, recurrent abdominal pain, postprandial fullness, and vomiting (*Tokumoto et al.*, 2010).

Surgical repair should be performed to avoid potential intestinal obstruction and strangulation except for those who cannot tolerate surgical repair due to sever underlying diseases (*Godazandeh and Mortazian*, 2012).

The hernia can be repaired by a variety of surgical approaches including laparotomy, thoracotomy, thoracoscopy, laparoscopy but the laparoscopic approach has been the gold standard and the initial step for repair (*Kaida et al.*, 2014).

The procedure of choice depends on the surgeon's experience. Small defects are easier to repair, but larger one

may involve a reduction of the intra-abdominal contents and reinforcement of the defect with a mesh (*Toydemir et al.*, 2012).

Pneumothorax has been recognized as potential complication during laparoscopic diaphragmatic repair. The risk, however, is minimal in patients with chronic hernia due to the presence of intrathoracic adhesions and the presence of sac (*Debergh and Fierens*, 2014).

Usually when present, the symptoms of pneumothorax are minimal and can be dealt with by lowering the insufflation pressure and adding positive end-expiratory pressure. Patients with persistent pneumothorax would need intercostal tube insertion in the postoperative period (*Machado*, 2016).

If large hernias are reduced, it is crucial to monitor post operatively for abdominal compartment syndrome (*Zhou et al.*, 2014).

Potential complications also include injury to gut including perforation and bleeding while reducing and handling an oedematous gut, Moreover disruption of the spleen with bleeding or injury to the tail of pancreas during manipulation (*Nakashima et al.*, 2011).

Aim of the Work 🗷

Aim of the Work

The aim of the study is to assess the efficacy of laparoscopy in treatment of diaphragmatic hernia in adults.

Anatomy & Embryology

Embryology of diaphragm:

Embryologically, the development of diaphragm occurs during the fourth week of gestation, and by the sixth week the pleuroperitoneal folds on the lateral body wall grows medially to fuse with the septum transversum. The fusions of these two muscle groups, which occur at the final stage of development, are regions anatomically vulnerable to developing hernia (*Slesser et al.*, 2011).

The diaphragm develops from multiple embryonic sources. The muscle and its associated connective tissue and central tendon develop from three sources: the septum transversum, the pleuroperitoneal folds, and the somites (Stuelsatz et al., 2012).

The septum transversum is the first structure present in the developing diaphragm and serves as the initial barrier between the thoracic and abdominal cavities. In all vertebrates, the septum transversum is a thin, mesodermal sheet of tissue that separates the heart from the liver (*Perry et al.*, 2010).