

BODY MASS INDEX IN MULTIPLE SCLEROSIS: ASSOCIATION WITH SERUM LEPTIN

Thesis

Submitted for the Partial Fulfillment of Master Degree of Neuro-Psychiatry

By

Hend Ali Ahmed Abdel-Rahman

M.B.B.CH

Faculty of Medicine - Ain-Shams University

Under Supervision of

Prof.Dr. Hala Mahmoud El-Khawas

Professor of Neurology Faculty of Medicine – Ain Shams University

Dr. Dina Mohammed Abdel-Gawad

Associate Professor of Neurology Faculty of Medicine – Ain Shams University

Dr. Mohammed Ali Abd El Hafez

Lecturer of Neurology
Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Aeknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Hala Mahmoud El-Khawas,** Professor of Neuro-Psychiatry, Faculty of Medicine, Ain-Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Dina Abdel-Gawad Zamzam**, Assistant Professor of Neuro-Psychiatry, Faculty of Medicine, Ain-Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Mohammed Ali Abd El Hafez,** Lecturer of Neuro-Psychiatry, Faculty
of Medicine, Ain-Shams University for his great help,
outstanding support, understanding, active
participation, and guidance.

I am truly grateful to **Prof. Eman Hadidi,** Professor of Clinical Pathology, Faculty of Medicine, Ain-Shams University for her heart-full guidance and constant supervision.

I would like to express my hearty thanks to all my family, especially my beautiful mother, for their support till this work was completed.

And above all, thanks to Allah, the most merciful for providing me with the strength to finish this work.

Hend Ali Ahmed Abdel-Rahman

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	8
List of Figures	10
Introduction	1 -
Aim of the Work	6
Review of Literature	
Chapter 1: Multiple Sclerosis	7
Chapter 2: Leptin, Body Mass Index and Multiple Sclerosis	30
Subjects and Methods	45
Results	50
Discussion	76
Summary and Conclusion	87
Recommendations	89
References	90
Appendices	113
Arabic Summary	

List of Abbreviations

Abb.	Full term
6MW	. 6-minute walk
<i>ANOVA</i>	. Analysis of variance
AQP4	. Aquaporin 4
AUC	. Area Under The Curve
<i>BMI</i>	. Body Mass Index
CD8	. Cluster of Differentiation 8 cell
CD4	. Cluster of Differentiation 4 cell
CIS	. Clinically Isolated Syndrome
CNS	. Central Nervous System
<i>CSF</i>	. Cerebro-Spinal fluid
Cw	. Oxygen Cost of Walking
DALYs	. Disability-Adjusted Life Years
DCs	. Dendritic Cells
DIS	. Dissemination In Space
DIT	. Dissemination In Time
<i>DMT</i>	. Disease Modifying Treatment
<i>EAE</i>	. Experimental Autoimmune
	Encephalomy elit is
<i>EBV</i>	_
	. Extended Disability Status Scale
FDCs	. Follicular Dendritic Cells
FOXP3	. Fork-Head box P3 protein
<i>GIANT</i>	. Genetic Investigation of Anthropometric Traits
GWASs	$.\ Genome ext{-}Wide\ Association\ Studies$
HDL	. High Density Lipoprotein
<i>HHV</i>	. Human Herpes Virus

List of Abbreviations cont...

Abb.	Full term
HLA	. Human Leukocyte Antigen
<i>IFN-b</i>	. Interferon-beta
<i>IFN-g</i>	. Interferon-gamma
<i>IgG</i>	. Immuno-globulin G
<i>IL</i>	. Inter-Leukin
<i>IQR</i>	. Interquartile Range
KDa	. Kilo-daltons (Molecular weight)
<i>Kg</i>	. Kilograms
LT	. Leukotrien
<i>m2</i>	. Meter Squared
MAGNIMS	. Magnetic Resonance Imaging In MS
<i>MENA</i>	. Middle East and North Africa
<i>MHC</i>	. Major Histo-compatibility Complex
<i>MRI</i>	. Magnetic Resonance Imaging
<i>MS</i>	. Multiple Sclerosis
MSWS-12	. Multiple Sclerosis Walking Scale-12
NHANES	. National Health and Nutrition Examination Survey
NMO	. Neuro-Myelitis Optica
<i>Ob gene</i>	
OB-R	. Obesity gene receptor
<i>PBMCs</i>	. Peripheral Blood Mono-nuclear Cells
PDDS	. Patient Determined Disease Steps
Pg	. picogram
PHA	. Phyto-haemagglutinin
	. Primary Progressive
PR	. Progressive Relapsing

List of Abbreviations cont...

Abb.	Full term
<i>RR</i>	Relapsing Remitting
P-value	Probability value
<i>SD</i>	Standard deviation
SEP	Socio-Economic Position
<i>SPMS</i>	Secondary Progressive Multiple Sclerosis
T25FW	Timed 25 Feet Walk
TCR	T Cell Receptor
<i>TGF</i>	Transforming Growth Factor
<i>Th</i>	T helper
<i>TNF</i>	Tumour Necrosis Factor
<i>T-reg</i>	T Regulatory cell
<i>USA</i>	United States of America
<i>WAT</i>	White Adipose Tissue
<i>WHO</i>	World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	WHO classification for BMI, 2004	46
Table (2):	Demographic characteristics of patients.	
Table (3):	Consanguinity, smoking and fa	
Table (4):	BMI of the study population	53
Table (5):	Demographic data for the control grow	ap54
Table (6):	Comparison between the control gand the patients group.	_
Table (7):	Serum leptin level cut off presentivity, specificity and P-valucontrols	e in
Table (8):	Total number of relapses, relapses in previous 2 years, type of MS, disactivity, EDSS score and degree disability.	sease e of
Table (9):	Presenting symptoms	62
Table (10):	Serum leptin level.	64
Table (11):	Relation of disability and other sparameters	-
Table (12):	Degree of disability and total number relapses, number of relapses in previous 2 years, type of MS and ty treatment.	the pe of

List of Eables cont...

Table No.	Title	Page No.
Table (13):	Serum leptin level and Age, Age a Duration of illness in years, Weight at onset, Height, BMI, Tot relapses, N. of relapses in prev years, EDSS.	Weight, tal n. of vious 2
Table (14):	Serum leptin level correlation with and BMI.	•
Table (15):	Serum leptin level and Type disease progression, Activity, Dis	sability,
Table (16):	Serum leptin level and MRI find patients.	· ·
Table (17):	Correlation between number of T2 and clinical parameters and serun level of the patient group	n leptin

List of Figures

Fig. No.	Title 1	Page No.
Figure (1):	Immune system dysregulation out	
Figure (2):	Immuno-pathogenesis of MS	23
Figure (3):	Clinical course of MS	28
Figure (4):	The most recent MS phenot classification (The 1996 vs 2013 muls sclerosis phenotype descriptions progressive disease)	tiple for
Figure (5):	Male and female percentages	51
Figure (6):	BMI of the study population	53
Figure (7):	Differences between control and patie groups regarding weight, height BMI	and
Figure (8):	Serum leptin levels in control patients groups	
Figure (9):	Sensitivity and specificity of serum le levels.	_
Figure (10):	Type of MS	61
Figure (11):	Disease activity.	61
Figure (12):	Presenting symptoms	62
Figure (13):	Type of treatment of MS	63
Figure (14):	Correlation between the degree disability and the patients' age in year	
Figure (15):	Correlation between degree of disab and duration of illness in years	~
Figure (16):	Degree of disability and total number relapses.	

List of Figures cont...

Fig. No.		Page No.					
Figure (17):	_		disability n the previo				69
Figure (18):	Degree	of dis	sability and	type	of MS		70
Figure (19):	_		disability				70

INTRODUCTION

ultiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease affecting more than 2 million people worldwide (*Heydarpour et al.*, 2015).

Multiple sclerosis is a relatively common disease in Europe, the United States, Canada, New Zealand, and parts of Australia. Incidence is low in childhood, increases rapidly after the age of 18, reaches a peak between 25 and 35 years (about 2 years earlier in women than men), and then slowly declines, becoming rare at age 50 and older. The female-to-male ratios are between 1.5 and 2.5 in most populations (*Ascherio and Munger*, 2007).

Middle Eastern and North African countries are located in a low- to moderate-risk zone for MS based on the 2013 MS Atlas (*Browne et al.*, 2014).

A community-based survey in Al Quseir, Egypt, has found an MS prevalence of 13.74/100,000 (*Tallawy et al.*, 2013).

Multiple sclerosis is a debilitating autoimmune disease of the central nervous system that results in chronic disability for the majority of those affected (*Compston and Coles*, 2008). It is a leading cause of non-traumatic disability in young adults in many countries (*Heydarpour et al.*, 2015). The disease has an important impact on the health economy of many countries

(*Trisolini et al.*, 2010), since current treatment regimens are costy and have adverse side-effect profiles and/or limited efficacy (*Hartung et al.*, 2015).

Four MS clinical courses are recognized: relapsing remitting (RR), secondary progressive (SP), primary progressive (PP), and progressive relapsing (PR). CIS is recognized as the first clinical presentation of a disease that shows characteristics of inflammatory demyelination that could be MS, but has yet to fulfill criteria of dissemination in time (*Lublin et al.*, *2014*).

In patients with the relapsing—remitting phase of the disease the disease begins with acute episodes of neurologic dysfunction, followed by periods of partial or complete remission with clinical stability between relapses (*Lublin and Reingold*, 1996).

SPMS is diagnosed retrospectively by a history of gradual worsening after an initial relapsing disease course, with or without acute exacerbations during the progressive course. PPMS is a part of the spectrum of progressive MS phenotypes with absence of exacerbations prior to clinical progression (*Lublin et al.*, 2014).

Multiple sclerosis is characterized by multi-centric inflammation and demyelination of the central nervous system, but the role of axonal injury and gliosis increases as the disease evolves (*Trapp et al.*, 1998).

MS is believed to be an autoimmune disease because inflammatory infiltrates of the CNS contain T and B lymphocytes (*Esiri and Gay*, 1997).

Genetic susceptibility has been linked to MHC class II genes (*McFarland et al.*, 1997). Although genetic susceptibility explains the clustering of MS cases within families and the sharp decline in risk with increasing genetic distance, it cannot fully explain the geographic variations in MS frequency and the changes in risk that occur with migration (*Ascherio and Munger*, 2007).

Disparities in environmental risk factors and genetic predispositions modulate the risk of MS at the population level (*Ebers*, 2008).

MS risk is about 10 times greater among individuals who experienced an undiagnosed EBV infection in childhood. Vitamin D is emerging as an important protective cofactor against MS. Other risk factors are involved in the pathogenesis of MS as: cigarette smoking, Diet, Hormones, and Other Factors (*Ascherio and Munger*, 2007).

Increased body mass index (BMI) at the age of 18 is associated with a two-fold increase in the risk of MS (*Munger et al.*, 2009).

Introduction

Obesity has been associated with a chronic inflammatory state, due to the secretion of pro-inflammatory proteins in the blood (*Ouchi et al.*, 2012).

A potential reason for the impact of obesity on disease is the associated increase in adipokines, a family of molecules with effects on inflammatory and autoimmune diseases (*Tilg* and Moschen, 2006).

Leptin, a cytokine-like hormone released primarily from adipocytes, exhibits neuroendocrine properties influencing energy balance. Serum leptin levels regulate body weight by inhibiting food intake and stimulating energy expenditure and are higher in subjects with a high BMI and body fat (*Ostlund et al.*, 1996).

The obese (ob) gene product of leptin is a 16 kDa protein secreted by white adipose tissues. It regulates food intake, body weight and maintains energy homeostasis via interactions in the brain, mainly the hypothalamus (*Harvey*, 2007). However the functions of leptin are not confined to the hypothalamus, with leptin receptors found in various regions of the brain not generally associated with energy balance, including the cortex, thalamus, cerebellum, brain stem, basal ganglia, olfactory tract and hippocampus (*Harvey*, 2007; *Pan and Kastin*, 2014). The wide distribution of leptin receptors points a potential role for leptin in modulating widespread biological actions in the CNS.