IMPACT OF IRRIGATION WITH LOW QUALITY WATER ON TOXIC ELEMENTS CONTENT OF A SOIL-CROP SYSTEM AFFECTED BY INDUSTRIAL POLLUTION IN DELTA AREA

MAHMOUD MOHAMED AHMED EL-MALIH

B.Sc., Agric. (Technology of Project Management), Open System Ain Shams Univ. Sci. (2007)

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Agriculture in Desert and Salt Affected Areas)

Arid Land Agricultural Graduated Studies and Research Institute
Faculty of Agriculture
Ain Shams University

Approval Sheet

IMPACT OF IRRIGATION WITH LOW QUALITY WATER ON TOXIC ELEMENTS CONTENT OF A SOIL-CROP SYSTEM AFFECTED BY INDUSTRIAL POLLUTION IN DELTA AREA

MAHMOUD MOHAMED AHMED EL-MALIH

B.Sc., Agric. (Technology of Project Management), Open System Ain Shams Univ. Sci. (2007)

This thesis for M.Sc. degree has been approved by:	
Dr. Maher Amin Wally	
Prof. Emeritus of Horticulture, Fac.	. of Agric., Al- Azhar Univ.
Dr. Abdel Ghani Mohamed El Gendy	y
Prof. Emeritus of Agric., Engine, F	
Dr. Usama Ahmed Ali El-Behairy	
Prof. of Horticulture, Fac. of Agric	
Dr. Armon Forid Abou Hodid	
Dr. Ayman Farid Abou Hadid	•••••
Prof. Emeritus of Horticulture, Fac.	of Agric., Ain Shams Univ.

Date of examination: / /2018

IMPACT OF IRRIGATION WITH LOW QUALITY WATER ON TOXIC ELEMENTS CONTENT OF A SOIL-CROP SYSTEM AFFECTED BY INDUSTRIAL POLLUTION IN DELTA AREA

MAHMOUD MOHAMED AHMED EL-MALIH

B.Sc., Agric. (Technology of Project Management), Open System Ain Shams Univ. Sci. (2007)

Under the supervision of:

Dr. Ayman Farid Abou Hadid.

Prof. Emeritus of Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Usama Ahmed Ali El-Behairy.

Prof. of Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Mohsen Mohamed Ali.

Prof. Emeritus of Geochemistry, Nuclear Materials Authority.

.

ABSTRACT

Two investigated drainage (El-Gabel El Asfar and Nikla) have been selected for study, according to the following consideration: surrounding heavily populated villages; its situation on the west side of the Nile near the intersection point between the Nile and its Delta and its closeness to highly industrial and agricultural activities. The aim of this study mainly concerned with the uptake of toxic elements (radioactive elements and heavy metals) by native plants grown naturally at polluted drainage, which is located at El-Gabel El-asfwr area and Nikla area.

The study deals with the usage of these plants in the detection of different elements (uranium and heavy elements). As well as the evaluation of the water used in the study area from heavy metals content for different life purpose. About 13 water samples from El-Gabel Asfer area and 8 samples from Nikla area have been taken from the water drainage at uniform intervals and from 5-7 m depth. The samples were analyzed and environmentally characterized through various important cations such as Ca, Na, K, Mg, U Th and heavy metal such as Co, Ni, Zr, Fe, Cu, V using flame photometer, spectrophotometric and atomic absorption techniques. The anions determined using either spectrophotometric or ion-chromatographic methods; they included bicarbonate, sulphate, chlorides.

This study focus on the evaluation of these water samples as potable according to international regulations Also Three plant species have collected from the study areas with their associated soil. Each species is collected in triplicate from the same point. The collected samples have been analyzed for their heavy metals and radioactive elements content as well as their associated soils.

The chemical composition of soil shows the dominance of SiO_2 , Al_2O_3 . MgO and CaO. While the prevailed trace elements are Sr (up to 307.6 ppm), Zr (up to 311.1 ppm), Cr (up to 266.4 ppm) and Ba (up to 457.1 ppm).

The uranium content of the soils ranges between 0.91 and 5.5 ppm declaring that the investigated areas are of low grade uranium area and the Th content of the soils ranges between 3.5 and 7.5 ppm. The radioactivity is attributed to the fertilizer.

21 water samples were taken along the drainage at Nekla and El-Gabel Asfar area. The chemical analysis for water samples shows salinity ranges between 910 and 960 ppm at Nekla and from 920 to 990 at El-Gabel Asfar area.

Keywords: Irrigation, Heavy metals, Waste Water, Soil, Castor bean, Woven, Water hyacinth

ACKNOWLEDGEMENTS

I am very deeply indebted to **Prof. Dr. / Ayman Farid Abou Hadid**, professor Emeritus of Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his close fairly supervision, valuable suggestions, reading the manuscript and continuous encouragement during the work.

Special thanks are offered to **Prof. Dr. / Mohsen Mohamed Ali,** professor Emeritus of geochemistry, Nuclear Materials Authority for suggesting the problem, collecting the samples, constructive guidance.

I wish to express my deep thanks to **Prof Dr. / Usama Ahmed Ali El-Behairy.** Professor of Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University for supervising the work, reading the manuscript and continuous discussion.

I wish to express my deep thanks to **Dr./ Ahmed Morsy Ahmed,** Assistant professor of Biochemistry, Nuclear Materials Authority, for supervising the work and continuous discussion.

Many thanks to my colleagues in Nuclear Materials Authority, for their incalculable help.

Hearty thanks to my father, my mother, my brothers and my wife.

Mahmoud Mohamed Ahmed El-Malih

CONTENT

	Page
LIST OF TABLES	XI
LIST OF FIGURES	XIII
ABBREVIATIONS	XVII
INTRODUCTION	1
REVIEW OF LITERATURE	5
2.1 Water Resources and utilization in Egypt	5
2.1.1 Water Supply	5
2.2 Effect of irrigation with wastewater on biota	6
2.2.1 General Effects	6
2.2.2 Heavy metals content	7
2.3. Primary Targets of Heavy Metal Toxicity	9
2.4. Effect of irrigation with wastewater on soil characteristics	10
2.4.1. pH, EC, soluble ions, calcium carbonate, and organic	10
matter content	
2.5. Heavy metals in plants	14
2.6. Accumulation and Concentration	20
MATERIALS AND METHODS	29
3.1 Instruments and Equipment	29
3.1.1 Measurement Instruments	29
3.2. Analytical Procedures	30
3.2.1 Sample Preparation	30
3.2.1.1. Water Analysis	30
3.2.1.1.1. pH measurement	31
3.2.1.1.2 Total Dissolved Salt	31
3.2.1.1.3 Conductivity	32
3.2.1.1.4 Determination of uranium	32
3.2.1.2 Soil samples	32
3.2.1.2.1 Determination of major oxides	33
3.2.1.2.2 Determination of trace elements	33
3.2.1.2.3 Uranium analysis in soil	33

	Page
3.2.1.3 Plant Sample	34
3.3.1 Statistical Analysis	34
RESULTS AND DISCUSSION	35
4.1. WATER	35
4.1.1. Physical characteristic of ground water:	35
4.1.2. Hydro chemical Characteristic:	35
4.1.3. pH value	38
4.1.4. Electric Conductivity	38
4.1.5. Salinity or total dissolved salts (T.D.S)	38
4.1.6. Trace elements concentration	39
4.1.6.1. Iron (Fe ²⁺)	40
4.1.6.2. Lead (Pb ²⁺)	40
4.1.6.3. Cadmium (Cd ³⁺)	41
4.1.6.4. Chromium (Cr ³⁺)	41
4.1.6.5. Zinc (Zn ⁺)	41
4.1.6.6. Nickel (Ni ²⁺)	41
4.1.6.7. Copper (Cu ²⁺)	41
4.1.6.8. Manganese (Mn ²⁺)	42
4.1.6.9. Molybdenum (Mo)	42
4.1.6.10. Vanadium (V)	42
4.1.6.11. Cobalt (Co)	43
4.1.6.12. Aluminum (Al ⁺³)	43
4.1.6.13. Uranium (U)	43
4.1.7. Evaluation of studied Waste water sample.	44
4.1.7.1. Evaluation for drinking water	45
4.1.7.2. Evaluation for laundry purpose	45
4.1.7.3. Evaluation for irrigation purpose	45
4.1.7.3.1. Classification according to salinity content (T.D.S.)	46
4.1.7.4. Evaluation of ground water for livestock and poultry	46
purposes.	
4.1.7.5. Evaluation of ground water for building purpose	46

VII

	Page
4.1.7.6. Evaluation of Ground water for industrial purpose	46
4.1.8. Uranium concentration in investigated water samples	47
4.1.8.1. Effect of uranium on health	48
4.1.9. Irrigation Suitability	49
4.1.9.1. Sodium Absorption Ratio (SAR)	49
4.1.9.2. Sodium Percent (Na %)	51
4.1.9.3. Residual Sodium Carbonate (RSC)	52
4.1.9.4. Potential Salinity (PS)	52
4.2. Soil Analysis	53
4.2.1. Geochemical Studies	53
4.2.1.1. Major Oxides:	53
4.2.1.1.1. SiO ₂	53
4.2.1.1.2. TiO ₂	53
4.2.1.1.3. Al ₂ O ₃	54
$4.2.1.1.4. \text{ Fe}_2\text{O}_3$	54
4.2.1.1.5. P ₂ O ₅ :	55
4.2.1.1.6. Na ₂ O and K ₂ O	55
4.2.1.1.7. CaO and MgO	55
4.2.1.2. Trace Elements:	56
4.2.1.2.1. Cerium:	56
4.2.1.2.2. Rubidium	58
4.2.1.2.3. Copper	59
4.2.1.2.4. Barium	60
4.2.1.2.5. Chromium	61
4.2.1.2.6. Lead	62
4.2.1.2.7. Zinc	63
4.2.1.2.8. Cobalt	64
4.2.1.2.9. Nickel	65
4.2.1.2.10. Gallium	66
4.2.1.2.11. Yitrium	67
4.2.1.2.12. Zirconium	68

VIII

	Page
4.2.1.2.13. Niobium	69
4.2.1.2.14. Vanadium	70
4.2.1.2.15. Strontium (Sr)	71
4.2.1.2.16. Thorium (Th)	72
4.2.1.2.17. Uranium U	73
4.3. Plant Analysis	77
4.3.1. Plant metals uptake	77
4.3.1.1. Castor bean	77
4.3.2. Correlation matrix of the Trace Elements for plants	82
4.3.2.1. Castor bean leaf and root:	82
4.3.2.1.1. Rubidium:	82
4.3.2.1.2. Copper	83
4.3.2.1.3. Barium:	84
4.3.2.1.4. Chromium:	85
4.3.2.1.5. Lead	86
4.3.2.1.6. Zinc	87
4.3.2.1.7. Cobalt	88
4.3.2.1.8. Nickel	89
4.3.2.1.9. Gallium	91
4.3.2.1.10. Yitrium	92
4.3.2.1.11. Zirconium	93
4.3.2.1.12. Niobium	94
4.3.2.1.13. Vanadium	95
4.3.2.1.14. Strontium	96
4.3.2.1.15. Thorium	97
4.3.2.1.16. Uranium	98
4.3.2.2. Woven	100
4.3.2.2.1. Woven plant	102
4.3.2.2.1.1. Rubidium	102
4.3.2.2.1.2. Copper	102
4.3.2.2.1.3. Barium	103

	Page
4.3.2.2.1.4. Chromium	104
4.3.2.2.1.5. Lead	105
4.3.2.2.1.5. Zinc	106
4.3.2.2.1.6. Cobalt	107
4.3.2.2.1.7. Nickel	108
4.3.2.2.1.8. Gallium	109
4.3.2.2.1.9. Yitrium	110
4.3.2.2.1.10. Zirconium	111
4.3.2.2.1.11. Niobium	112
4.3.2.2.1.12. Vanadium	113
4.3.2.2.1.13. Strontium	114
4.3.2.2.1.14. Thorium	115
4.3.2.2.1.15. Uranium	116
4.3.2.3. Water hyacinth	118
4.3.2.3.1. Water hyacinth plant	119
4.3.2.3.1.1. Rubidium	119
4.3.2.3.1.2. Copper	120
4.3.2.3.1.3. Barium	121
4.3.2.3.1.4. Chromium	122
4.3.2.3.1.5. Lead	123
4.3.2.3.1.6. Zinc	124
4.3.2.3.1.7. Cobalt	125
4.3.2.3.1.8. Nickel	126
4.3.2.3.1.9. Gallium	127
4.3.2.3.1.10. Yitrium	128
4.3.2.3.1.11. Zirconium	129
4.3.2.3.1.12. Niobium	130
4.3.2.3.1.13. Vanadium	131
4.3.2.3.1.14. Strontium	132
4.3.2.3.1.15. Thorium	133
4.3.2.3.1.16. Uranium	134

	Page
4.3.3. Plant Soil Concentration Ratio	135
SUMMARY ANDCONCLUSION	139
REFERENCES	142
ARABIC SUMMARY	

LIST OF TABLES

Heavy metals and their impact on plant
The chemical analysis of Nikla water samples
The chemical analysis of the El gabl Elasfar water
samples
Analysis of Nikla and Elgabl Elasfar water samples
Published values for uranium concentration in
different source and location in Egypt
Irrigation water quality parameters for the collected
water samples for Elgabl Elasfar drain
Irrigation water quality parameters for the collected
water samples for Nikla drain
Chemical analysis of major oxides (wt. %) Area
Study in Delta, Egypt
Correlation matrix of the major oxides of soil Area
Study in Delta, Egypt
The trace elements (ppm) of Study Area soil
Samples, Delta, Egypt
Correlation matrix of the trace elements of Study
Area soil Samples, Delta, Egypt
Chemical analysis of minor elements for Castor bean
leaf
Chemical analysis of minor elements for Castor bean
root
Correlation matrix analysis of minor elements for
Castor bean leaf
Correlation matrix analysis of minor elements for
Castor bean root.
Chemical analysis of minor elements for Woven
plant

XII

Table No.		Page
17	Correlation matrix analysis of minor elements for	
	Woven plant	101
18	Chemical analysis of minor elements for Water	
	hyacinth	118
19	Correlation matrix analysis of minor elements for	
	Water hyacinth	119
20	C R of minor elements for Castor bean root	137
21	C R of minor elements for Woven plant	138

XIII

LIST OF FIGURES

Fig. No.		Page
4.1	Ce concentration in the investigated soil samples	58
4.2	Rb concentration in the investigated soil samples	59
4.3	Cu concentration in the investigated soil sample	60
4.4	Ba concentration in the investigated soil samples	61
4.5	Cr concentration in the investigated soil samples	62
4.6	Pb concentration in the investigated soil samples	63
4.7	Zn concentration in the investigated soil samples	64
4.8	Co concentration in the investigated soil samples	65
4.9	Ni concentration in the investigated soil samples	66
4.10	Ga concentration in the investigated soil samples	67
4.11	Y concentration in the investigated soil samples	68
4.12	Zr concentration in the investigated soil samples	69
4.13	Nb concentration in the investigated soil samples	70
4.14	V concentration in the investigated soil samples	71
4.15	Sr concentration in the investigated soil samples	72
4.16	Th concentration in the investigated soil samples	73
4.17	U concentration in the investigated soil samples	74
4.18A	Rb concentration in the investigated castor bean leaf	83
4.18B	Rb concentration in the investigated castor bean root	83
4.19A	Cu concentration in the investigated castor bean leaf	84
4.19B	Cu concentration in the investigated castor bean root	84
4.20A	Ba concentration in the investigated castor bean leaf	85
4.20B	Ba concentration in the investigated castor bean root	85
4.21A	Cr concentration in the investigated castor bean leaf	86
4.21B	Cr concentration in the investigated castor bean root	86
4.22A	Pb concentration in the investigated castor bean leaf	87
4.22B	Pb concentration in the investigated castor bean root	87
4.23A	Zn concentration in the investigated castor bean leaf	88
4.23B	Zn concentration in the investigated castor bean	
	root	88