The Effect of Exogenous Nerve Growth Factor "Cerebrolysin" on the Incidence and Severity of Paclitaxel- Induced Peripheral Neuropathy in Cancer Patients

A Thesis submitted for the fulfillment of Master Degree in Pharmaceutical Sciences (Clinical Pharmacy)

by

Yomna Abdel Aziz Mohamed Rawhy Elhossamy

Bachelor of Pharmaceutical Sciences

Faculty of Pharmacy

Misr International University

2009

Under the supervision of

Dr. Lamiaa Mohamed El Wakeel

Assistant Professor of Clinical Pharmacy Faculty of Pharmacy Ain Shams University

Dr. Mahmoud Abass El Lithy

Dr. Mona Farag Schalaan

Assistant Professor of Clinical Oncology Faculty of Medicine Ain Shams University Professor and Head of Clinical
Pharmacy and Pharmacy Practice Department
Faculty of Pharmacy
Misr International University

Faculty of Pharmacy

Ain Shams University

2018

Acknowledgment

In the Name of Allah, the most Gracious the most Merciful

Thanks to God, all praise to Allah for the strength and his blessing in completing this thesis

Special appreciation goes to my supervisor **Dr.Lamia El Wakeel**, Assistant Professor of Clinical Pharmacy, Ain Shams University for her continuous support. Her constructive comments, attention to details and suggestions throughout the practical and thesis work have contributed to the success of this research.

I would like to express my deepest gratitude to **Dr. Mahmoud El Lithy**, Assistant Professor of Clinical Oncology, Faculty of Medicine, Ain Shams University, for his continuous support, technical assistance in the hospital and medical knowledge regarding this topic.

I also would like to express my deepest gratitude to **Dr. Mona Schalaan**, Assistant Professor and head of Clinical Pharmacy and Pharmacy Practice Department, MIU, for her continuous encouragement, creativity, constant support and details oriented suggestions throughout the thesis work.

Sincere thanks and deepest gratitude goes to the world's best parents, husband, brother, sister and daughter for their endless love, prayers, help and continuous encouragement and support.

Sincere thanks to Ain Shams University Hospitals and patients for allowing me to complete my practical part of the thesis within their premises

My deepest love and thanks for my family, friends and colleagues for their kindness and support the past years

Contents

List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Abstract	vii
Introduction	1
Review of literature	4
1. Breast Cancer	4
2. Paclitaxel	21
3. Peripheral Neuropathy	30
4. Paclitaxel Induced Peripheral Neuropathy	42
5. Nerve growth factor	55
6. Cerebrolysin	56
7. The Role of the Clinical Pharmacist	62
Aim of the work	67
Patients and Methods	68
Results	87
Discussion	110
Conclusion	117
Limitations	118
Recommendations	119
Summary	120
References	125
Appendix	144
Arabic Summary	ĺ

List of Tables

Table No.	Title	Page
Table 1	Stages and TNM classification in breast cancer	13
Table 2	Chemotherapies associated with peripheral neuropathy	36
Table 3	Patients' demographics and baseline data in both groups	89
Table 4	Frequency and grades of sensory, motor and autonomic neuropathy after the	91
	first cycle	
Table 5	Side effects reported after the first cycle	92
Table 6	Frequency and grades of sensory, motor and autonomic neuropathy after the	94
	second cycle	
Table 7	Side effects reported after the second cycle	95
Table 8	Frequency and grades of sensory, motor and autonomic neuropathy after the	97
	third cycle	
Table 9	Side effects reported after the third cycle	98
Table 10	Overall occurrence of neuropathy in control and test groups from baseline till	100
	the third cycle	
Table 11	Change in numbness among the three cycles in control and test groups	101
Table 12	Change in neuroscore values between control and test groups over time	103
Table 13	Change in nerve growth factor levels between control and test groups over	106
	time	
Table 14	Correlation between the neuroscore and nerve growth factor level	109
Table 15	Change in lab parameters between control and test groups from baseline till	109
	the end of study	

List of Figures

Figure No.	Title	Page
Figure 1	Normal breast anatomy	5
Figure 2	Structure of normal breast	5
Figure 3	Structure of adipose tissue of healthy breast	6
Figure 4	Signs and symptoms of breast cancer	7
Figure 5	Paclitaxel structure	22
Figure 6	The cell cycle	23
Figure 7	Phases of mitosis	25
Figure 8	Structure of microtubules	26
Figure 9	Effect of Paclitaxel on microtubules	27
Figure 10	Mechanism of action of paclitaxel	28
Figure 11	Structure of the nervous system	31
Figure 12	Function of sensory, motor and autonomic nerves	34
Figure 13	Chemotherapy induced peripheral neuropathy sensory loss, "glove-and-	37
	stocking" distribution	
Figure 14	Study Flow Chart	68
Figure 15	Paclitaxel induced peripheral neuropathy & grading according to The	
	European Organization for Research and Treatment of Cancer Quality of	74
	Life Questionnaire-Chemotherapy Induced Peripheral Neuropathy twenty-	
	item scale	
Figure 16	Arabic version of the Questionnaire	75
Figure 17	Self-reporting side effects card	77
Figure 18	Standard curve of nerve growth factor	84
Figure 19	CONSORT diagram representing patient allocation and recruitment	88
Figure 20	Changes in numbness among the three cycles in control and test groups	102
Figure 21	Change in neuroscore values between control and test groups over time	104
Figure 22	Change in nerve growth factor levels between control and test groups over	107
	Time	

List of Abbreviations

Abbreviation	Full term
AD	Alzheimer's disease
ALC	Acetyl-L-Carnitine
ALT	Alanine aminotransferase
ASCO	American Society of Clinical Oncology
AST	Aspartate aminotransferase
BBB	Blood brain barrier
BDNF	Brain Derived Neurotrophic Factor
BRCA	Breast Cancer susceptibility gene
BSA	Body surface area
BSE	Breast self exam
BUN	Blood urea nitrogen
Ca	Calcium
CBC	Complete blood count
CIPN	Chemotherapy induced peripheral neuropathy
CMT	Charcot Marie Tooth
CNS	Central nervous system
CrEL	Cremophor EL
CYP	Cytochrome P
DCIS	Ductal carcinoma in situ
DM	Diabetes mellitus
DNA	Deoxyribonucleic Acid
DRG	Dorsal root ganglia
EDTA	Ethylene- diamine- tetra- acetic acid
EORTC QLQ	The European Organization for Research and Treatment of
CIPN20	Cancer Quality of Life Questionnaire Chemotherapy
	Induced Peripheral Neuropathy twenty- item scale
ELISA	Enzyme linked immunosorbant assay
EMG	Electromyography
E-site	Exchangeable
FACT- G	Functional Assessment of Cancer Therapy
Fasl	First apoptosis signal ligand
FDA	Food and drug administration
GTP	Guanosine triphosphate
HER2/neu	Human epidermal growth factor receptor 2
HIV	Human immunodeficient virus
HMSN	Hereditary motor and sensory neuropathy

HRP	Horseradish Peroxidase
IDC	Invasive ductal carcinoma
IGF-I	Insulin-like growth factor-I
IL	Interleukin
ILC	Invasive lobularcarcinoma
INCAT	Modified Inflammatory Neuropathy Cause and Treatment
LCIS	Lobular carcinoma in situ
MAOI	Monoamine oxidase inhibitors
mISS	Sensory sumscore
MRI	Magnetic resonance imaging
MTOC	Microtubule organizing centers
Na	Sodium
NCI	National Cancer Institute
NCI-CTCAE	National Cancer Institute- Common Toxicity Criteria for
	Adverse Events
NCV	Nerve conduction velocity
NGF	Nerve growth factor
NMDARs	N-methyl-D-aspartate receptors
NRTIs	Nucleoside reverse transcriptase inhibitors
NS	Nervous system
NSAIDs	Non- steroidal anti- inflammatory drugs
N-site	Non-exchangeable
NT	Neurotrophin
NTF	Neurotrophic factor
OTC	Over the counter
P	Phosphrous
P-APS	Paclitaxel acute pain syndrome
PET	Positron emission tomography
PIPN	Paclitacel induced peripheral neuropathy
PNS	Peripheral nervous system
QOL	Quality of life
QST	Quantitative Sensory Testing
RBC	Red blood cell
ROS	Reactive oxygen species
rhNGF	Recombinant human nerve growth factor
SARMs	Selective Androgen Receptor Modulators
SEs	Side effects

SERMs	Selective Estrogen Receptor Modulators
SPSS	Statistical package for social sciences
TNF	Tumor necrosis factor
TNSc	Clinical Total Neuropathy Score
TMB	Tetramethylbenzidine
TrKA	Tyrosine kinase
TRP	Transient receptor potential
US	United States
WHO	World Health Organization

Abstract

Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a common toxicity with no proven agent beneficial for prevention. The potentiality of Nerve Growth Factor (NGF) as a protective agent for PIPN was suggested by several studies.

<u>Aim:</u> The aim of this study is to test the impact of exogenously administered NGF on PIPN and to assess NGF levels in relation to PIPN severity.

Methods: Forty patients were prospectively randomly allocated to Paclitaxel alone (control group) or Paclitaxel + exogenous NGF (test group). Neuropathy occurrence and severity was assessed before enrollment and after each cycle using The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Chemotherapy Induced Peripheral Neuropathy twenty-item scale (EORTC QLQ-CIPN20). Nerve Growth Factor level was assessed in both groups at baseline and at the end of the study. Nerve Growth Factor safety was assessed and side by laboratory investigations the occurrence of effects. **Results:** There was significant increase in the EORTC QLQ-CIPN20 score in the control group (p<0.001) and a stabilization in the score in the test group. Nerve Growth Factor levels significantly increased in the test group (p<0.001) and declined in the control group. A highly significant negative correlation existed between NGF level and the EORTC QLQ-CIPN20 score (r=-0.781, p<0.001). No significant difference was observed between the two groups in the occurrence of side effects or other toxicities.

<u>Conclusion:</u> Exogenous NGF may have a potential neuroprotective effect against PIPN in breast cancer patients. Higher endogenous NGF level is inversely correlated with the occurrence and severity of PIPN.

<u>Keywords:</u> Nerve Growth Factor, Neuropathy, Paclitaxel, Breast Cancer.