SEED SPROUT PRODUCTION AS AFFECTED BY CO₂ AND MICROBIAL INOCULANTS

By

NAHED HASSAN EL-SAYED HASSAN EISSA

B.Sc. Agric.Sc.(Horticulture), Ain Shamus University, 1987M.Sc. Environ. Sc. (Agricultural Science), Ain ShamusUniversity, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Vegetable crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

SEED SPROUT PRODUCTION AS AFFECTED BY CO₂ AND MICROBIAL INOCULANTS

By

NAHED HASSAN EL-SAYED HASSAN EISSA

B.Sc. Agric.Sc.(Horticulture), Ain Shamus University, 1987M.Sc. Environ. Sc. (Agricultural Science), Ain ShamusUniversity, 2013

This thesis for Ph.D. Degree has been approved by:

Dr.	Fatma Ahmed Mohamed Rizk
	Researcher professor Emeritus of Vegetable Crops, National Research Center
Dr.	Shawky Mahmoud Selim
	Professor of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.
Dr.	Mona Mohamed Saied Zayed
	Associate Professor of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.
Dr.	Mamdouh Mohamed Fawzy Abdallah
	Professor Emeritus of Vegetable Crops, Faculty of Agriculture, Ain
	Shams University.

Date of Examination: 16/9/2018

SEED SPROUT PRODUCTION AS AFFECTED BY CO₂ AND MICROBIAL INOCULANTS

By

NAHED HASSAN EL-SAYED HASSAN EISSA

B.Sc. Agric.Sc.(Horticulture), Ain Shamus University, 1987M.Sc. Environ. Sc. (Agricultural Science), Ain ShamusUniversity, 2013

Under the supervision of:

Dr. Mamdouh Mohamed Fawzy Abdallah

Professor Emeritus of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Mona Mohamed Saied Zayed

Associate Professor of Agricultural Microbiology, Microbiology Department, Faculty of Agriculture, Ain Shams University.

Dr. Mosaad Koth Koth Hassanein

Head researches, Central Laboratory for Agricultural Climate, Agricultural Research Centre (ARC).

ABSTRACT

Nahed Hassan El-Sayed Hassan Eissa. Seed Sprout Production as Affected by CO_2 and Biofertilizers. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2018.

Microgreen pea (pisum sativum L.) as salad shoots consumption within two weeks of seedling emergency is a new ready to eat baby leaf vegetable in Egypt. Green barley grass is the young leaves of barley (Hordeum vulagre), can take as juice powder and tablets. The internal quality change of microgreen pea shoots and barley green grass is greatly affected by surrounding environmental conditions. Especially increased elevation of carbon dioxide concentration in the air. This work was focused on the impacts of predicted climate changes conditions on the internal quality changes of 14 days old microgreen pea shoots and green barley grass using carbon dioxide concentrations (600 ppm and 800 ppm) compared with ambient air, growing in interaction with three microbial inoculants and their combinations, in tray sprouting method in semiautomated growth chambers. Obtained results showed largest numerical yield of microgreen pea and green barley grass per unit area in 800 ppm CO₂ concentration with increasing about 20% and 37.8% respectively more than ambient air followed by 600 ppm with increasing about 9.2% and 24.2 respectively than ambient air.

Moreover, CO₂ at 800 ppm increased microgreen pea and green barley grass crude protein content 37.8% and 81.9%, lipid 46.9% and 74.3% and energy 19.5 and 35.8% respectively per unit area compared with ambient air while decreased carbohydrate content in microgreen pea by 5.3% and increased in green barley grass by 20.3%, study finding suggested that microgreen pea shoots and green barley grass growing in higher CO₂ concentration maintain optimal internal quality with pronouncing for green barley grass.

Key words: Microgreen Pea, green barley grass, rice straw, CO₂, microbial inoculants, proximate analysis.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for directing me to the right way and provides me all I have.

I would like to express my deepest and sincere and appreciate gratitude to **Prof. Dr. Mamdouh Mohamed Fawzy Abdallah**, Professor Emeritus of vegetable Horticulture Department, Faculty of Agriculture, Ain Shams University, for his supervision, guidance, valuable help, continuous support and encouragement during preparing this work and study, his valuable technical advice useful discussion as well as for his help in preparation this manuscript.

I am indebted and sincere thanks and appreciate to **Dr. Mona Mohamed Saied Zayed**, Associate professor of agricultural Microbiology, Microbiology Department, Faculty of Agriculture, Ain Shams University, for her kindly support, encouragement and valuable help and support during carrying out this work.

Moreover, I would like to express my deep thanks and gratitude to **Dr. Mosaad Kotb Kotb Hassanein**, Senior researcher, Central Laboratory for Agricultural Climate, Agricultural Research Centre (ARC), for his kind supervision, valuable assistance, and faithful attitude during the preparation of this study.

Special thanks are due to the staff of CLAC (Central Laboratory for Agricultural Climate).

I would like to express my gratitude and my deep thanks to my mother and sister for their great support and enhancing me throughout my life.

Finally I wish to express my sincere gratitude to every one cooperate with me during this work.

CONTENTS

		page
LIST	Γ OF TABLES	iv
1. INT	RODUCTION	1
2. REV	/IEW OF LITERATURE	4
2.1.	Pea microgreens	4
2.2.	Pea microgreens production	6
2.3.	Chemical composition affected by germination	7
2.4.	Seed sprouting and sprout production	8
2.5.	Co2 concentration	10
2.6.	Microbial inoculation	11
2.7.	Agriculture wastes (rice straw)	13
2.8.	Sprouting for livestock fodder	15
2.9.	The Sprouting Process	16
2.10.	Changes in dry matter due to sprouting	16
2.11.	Changes in carbohydrates due to sprouting	17
2.12.	Changes in protein due to sprouting	18
2.13.	Changes in straw medium fiber fraction due to sprouting	20
3. MA	TERIAL AND METHODS	22
3.1.	Materials	22
3.1.1.	Microbial inoculants	22
3.1.2.	Microbial media	22
3.1.2.1.	Nutrient broth medium (Jacobs and Gerstein, 1960).	22
3.1.2.2.	King's B agar Medium (Schaad, 1980)	23
3.1.2.3.	Modified Ashby's medium (Abd El-Malek and Ishac,	
	1968)	23
3.1.3.	Rice straw	23
3.1.4.	Seeds material	24
3.2.	Methods	24
3.2.1.	Experimental design and treatments	24
3.2.1.1.	CO ₂ concentrations	24
3.2.1.2.	Addition of microbial inoculants	25

3.2.1.3.	Seeding density experiments	25
3.2.1.4.	Preparation of pea microgreens	25
3.2.1.5.	Preparation of barley green grass	26
3.2.2.	Parameters measured	26
3.2.2.1.	Harvesting	26
3.2.2.2.	Growth parameters	26
3.2.3.	Chemical and biochemical parameters	27
3.2.3.1.	Sample preparation	27
3.2.3.2.	Proximate analysis	27
3.2.3.3.	Minerals determination	27
3.2.3.4.	Total chlorophyll	27
3.2.3.5.	Spent sprout	28
3.2.3.6.	Parameters measured	28
3.3.	Statistical analysis	28
4. RES	ULTS AND DISCUSSION	29
4.1.	Part I: Production of sprouts	29
4.1.1	Pea microgreens (green pea shoot sprouts)	29
4.1.1.1.	Effect of CO ₂ concentrations, microbial inoculants, and	
	their interactions on green pea shoots length, weight,	
	their interactions on green pea shoots length, weight, and chlorophyll.	29
4.1.1.2.		29
4.1.1.2.	and chlorophyll.	29
4.1.1.2.	and chlorophyll	29
4.1.1.2. 4.1.1.3.	and chlorophyll	
	and chlorophyll	
	and chlorophyll	
	and chlorophyll. Proximate analysis and energy of pea sprout sprouts as affected by microbial inoculants, CO ₂ concentrations, and their interactions. Minerals content of pea sprout shoots as affected by CO ₂ concentrations, microbial inoculants, and their	32
4.1.1.3.	and chlorophyll. Proximate analysis and energy of pea sprout sprouts as affected by microbial inoculants, CO ₂ concentrations, and their interactions. Minerals content of pea sprout shoots as affected by CO ₂ concentrations, microbial inoculants, and their interactions.	32
4.1.1.3. 4.1.2.	and chlorophyll. Proximate analysis and energy of pea sprout sprouts as affected by microbial inoculants, CO ₂ concentrations, and their interactions. Minerals content of pea sprout shoots as affected by CO ₂ concentrations, microbial inoculants, and their interactions. Barley sprouts (Green barley grass).	32

4.1.2.2	2. Proximate analysis and energy of green barley grass	
	sprouts as affected by microbial inoculants, CO ₂	
	concentrations, and their interactions	40
4.1.2.3	3. Minerals content of barley sprout shoots as affected by	
	CO ₂ concentrations, microbial inoculants, and their	
	interactions	42
4.2.	Part II: Production of spent sprout	46
4.2.1.	Proximate analysis and energy of pea spent sprouts as	
	affected by microbial inoculants, CO2 concentrations,	
	and their interactions.	46
4.2.2.	Proximate analysis and energy of barley spent sprouts as	
	affected by microbial inoculants, CO2 concentrations,	
	and their interactions.	49
4.2.3.	Effect of CO ₂ concentrations, microbial inoculants and	
	their interaction on pea and barley spent yield, C% and	
	C/N ratio	51
	Effect of elevated CO ₂ on microbial inoculants and	
	subsequently spent sprouts	53
5. SI	U MMARY	57
6. R	EFERENCES	61
$\mathbf{A}^{:}$	RABIC SUMMARY	

LIST OF TABLES

Table		page
1.	Effect of CO ₂ concentrations, microbial inoculants, and	
	their interactions on Pea microgreens shoots characters	
	and Chlorophyll (µg Chl. /cm) (Combined data of two	
	experiments)	31
2.	Effect of CO ₂ concentrations, microbial inoculants, and	
	their interactions on proximate analysis (g/100g) and	
	energy (kcal/g) of microgreens pea shoot (Combined	
	data of two experiments)	34
3.	Effect of CO ₂ concentrations, microbial inoculants, and	
	their interactions on minerals content of microgreens	
	pea shoots (Combined data of two experiments)	36
4.	Effects of CO ₂ concentrations, Microbial inoculants and	
	their interactions on barley grass sprouts shoot	
	characters and Chlorophyll (µg Chl. /cm) (Combined	
	data of two experiments)	39
5.	Effect of CO ₂ concentrations, microbial inoculants and	
	their interactions on proximate analysis (g/100g) and	
	energy (K cal. /g) of barley grass sprouts shoot	
	(Combined data of two experiments)	41
6.	Effect of CO ₂ concentrations, Microbial inoculants and	
	their interactions on minerals content of barley grass	
	sprouts shoot (Combined data of two experiments)	43
7.	Effect of CO ₂ concentrations, microbial inoculants and	
	their interactions on proximate analysis (g/100g) and	
	energy (K cal. /g) of Pea microgreens spent (Combined	
	data of two experiments)	48
8.	Effect of CO ₂ concentrations, Microbial inoculants on	
	proximate analysis (g/100g) and energy (K cal. /g) of	
	barley green grass spent sprouts (Combined data of two	

	experiments)	50
9.	Effect of CO ₂ concentrations and microbial inoculants	
	on microgreens pea and barley green grass spent yield	
	(g/m2) (Combined data of two experiments)	52

INTRODUCTION

Today, research seems to be confirming that seed sprouts microgreens and baby greens are the function food of the future, as was the food of the past. Therefore, the attention of experts dealing with the healthy nutrition turned more and more towards, the determination of the biological value of the nutritional sprouts and microgreens (**Penas** *et al.*, **2008**; **Abdallah 2008**; **Marton** *et al.*, **2010** and **Anwar Dina 2015**). The consumption of green leafy vegetables is recommended due to their high content of vitamins, minerals, and antioxidant phytochemicals, as well as low content of fat and carbohydrate (**Rico** *et al.*, **2007**). To increase variety and attract even more consumers , the fresh–cut producers seek for new varieties of leafy vegetables to add to ready-to-eat salad mixtures (**Martinez-so'nchez** *et al.*, **2012**).

Pea microgreens and baby shoot greens were recently presented as a ready-to-eat baby-leaf vegetable and is recognized as a popular vegetable in some parts of Asia and Africa which also is gaining popularity in the United States and Europe (Miles and Sonde 2003; Ebert 2012 and Santos *et al.*, 2014).

Fresh green barley grass produced is of such high quality that it is suitable for green juice production, green flour and even for livestock. Microgreens are usually grown in high light conditions with low humidity and good air circulation. Seed density is much lower than with sprouts. Therefore, microgreens have much better developed flavors and taste than sprouts (Franks and Richardson 2009).barley microgreen leaves passes beneficial properties, such as the antioxidant ,hypolipidaemic, antidepressant and anti-diabetic effects (Kamiyama and Shibamoto 2012), probably due to wide range of secondary metabolites contained within barley. Some kind of barley micro greens can be harvested more than one time, which renewed its growth after cutting and this behavior could be more effective to increase the total yield per square meter.

INTRODUCTION

Changes in earth's climate have been projected by the end of the 19th century because some atmospheric "greenhouse" gases are increasing at which Carbone dioxide (CO₂) one of them, (**IPCC 2001**). The naturally CO₂ concentration in ambient air is 400 parts per million (ppm). However, doubling ambient CO₂ level (i.e 700 to 800ppm) which is predicted to occurs due to climate changes could make a significant and visible difference in plant growth and yield because CO₂ is utilized by plants for higher rates of photosynthesis during daytime (**Ludwig and Asseng 2006**; Süß *et al.*, 2015 and Poudel and Dunn 2017).

However, C_3 Photosynthetic pathways plants as peas are more responsive to higher CO_2 concentration than plants having a C_4 pathway. An increase in ambient CO_2 to 800 ppm can increase the yield of C_3 plants up to 40% to 100% (**Poudel and Dunn2017**).

The main consideration for biological management of plant growth is to utilize microbial inoculants that play a dynamic role in sustaining agriculture by improving their growth performance in a safer way (Mcdaniel et al., 2014). Plant response to microbial inoculants could be associated with more than one mechanism at which microorganisms were suggested to have more than one function in stimulating plant growth that results in more than one consequence (Cakmakci et al., **2007**), therefore, they have great capabilities to increase plant growth and yield under different conditions. These increments could be attributed to different mechanisms such as increasing nutrients uptake through solubilization and degradation of complicated compounds, nitrogen fixation which has special effect on the physiological processes of plants (Valentine et al., 2010 and Zayed Mona 2012) and stimulating plant growth either by production of plant growth promoting substances such as indole-3-acetic acid, cytokinins and gibberellins which able to encourage progressive effects on the plant growth and development or modulating endogenous plant hormone levels (Gray 2004; Van Loon 2007; Ortíz-Castro et al., 2008; and Ahemad and Khan 2011).

INTRODUCTION

In Egypt there is a large amount of agricultural wastes produced annually, after harvesting of grains. One of these wastes is rice straw which produced in an average of 3.5 million ton on year (**Khattab** *et al.*, **2009**).

The objectives of the present work were; to study the effect of different microbial inoculants and CO₂ concentration on pea and barley microgreens characters, yield and chemical composition.

REVIEW OF LITERATURE

2.1. Pea microgreens

Legume seeds are important sources of energy and protein in many parts of the world, both in animal and human nutrition (Kaushik et al., 2010).

However, their nutritional value may be compromised in part by the presence of undesirable components, known as antinutritional factors (ANFs). Legumes have a symbiotic relationship with atmospheric nitrogen (N) fixing bacteria that live in root nodules and that make legumes independent of N fertilization. Legumes such as alfalfa, common vetch, pea and white clover are important forages on many cattle farmers. The main reason of this interest is to enhance the ruminant's performance, because of their high protein contents (Karabulut et al., 2007).

Although, legume seeds contain a moderately high amount of protein, calories, certain minerals and vitamins (**Deshpande**, 1992) their use in food and feed is still limited by their low amount of sulfur- containing amino acids, low protein digestibility and presence of several anti-nutritional components (**Mubarak**, 2005). Soaking is a kind of treatment caused an increase the total amino acids of seeds, in addition, it has been improved the in vitro protein digestibility (**Khattab** *e t al.*, 2009).

During seeds germination the chemical composition changes drastically because biochemical activity produces essential compounds and energy (Moongngarm and Saetung 2010), some nutrients transform to bioactive components as a part of these changes. During germination lipids, carbohydrates, and storage proteins within the seed are broken down in order to