

Value of lung ultrasound in diagnosis of acute respiratory failure by BLUE protocol.

This is submitted for partial fulfillment of the master degree in Chest Diseases

by Samar Helmy Abd Elrahman

M.B.B.Ch.

Supervised by Prof. Sherief Elbohy

Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Prof. Eman Ramzy

Assist.Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Hossam Eldin Moh. Abd Elhamid

Lecturer of Chest Diseases Faculty of Medicine Ain Shams University

Chest Department
Faculty of Medicine
Ain Shams University
2015

ACKNOWLEDGMENT

First, thanks to "ALLAH" for granting me the power to accomplish this work and without His willing I would have achieved nothing.

I would like to express my sincere gratitude and appreciation to **Prof. Dr. Sheief Elbohy**. Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for his valuable knowledge, great help, continous guidance and kind encouragement during this work and reviewing my work till the end. Words of thanks are minute to express my gratitude for him for giving me the chance to learn something new and useful.

I would like to express my thanks gratitude to **Prof. Dr. Eman Ramzy.** Assist Prof. of Chest Diseases, Faculty of Medicine, Ain Shams University for her share to completing this work.

I would like to express my deepest thanks and gratitude to **Dr. Hossam Eldin Moh.** Abd Elhamid. lecturer of Chest diseases, Faculty of Medicine, Ain Shams University for his guidance and support throughout this work.

I am also deeply thankful to the sonographers; **Dr. Ahmed Esmail and Dr. Ahmed Soliman** for their great effort and support.

Finally, I would like to express my deep thanks to **my family** who were always beside me giving me all forms of support to accomplish this work.

The candidate

Samar Helmy Abd Elrahman

List of Contents

Title	Page No
List of Contents	III
List of Tables	IV
List of Figures	V
List of Abbreviations	VII
Introduction	1
Aim of work	11
Review	13
Results	73
Discussion	102
Conclusion	110
Limitation & Recommendation	112
Refrences	116
الملخص العربي	1

List of Tables

Title No	Title	Page No
Table 1 Examp	oles of Doppler indices p	roposed to
semi-qu	antitatively predict left	ventricular
filling p	oressures in patients hospital	ized17
Table 2 . Detaile	d performances of the BLU	E-protocol 68
Table 3;		74
Table 4:		75
Table 5 :		76
Table 6 :		77
Table 7 :		78
Table 8:		79
Table 9 :		80
Table 10:		81
Table 11:		82
Table 12 :		84
Table 13 :		85
Table 14:		85
Table 15		86
Table 16:		87
Table 17:		88
Table 18:		89
Table 19:		90
Table 20:		91
Table 21:		92
Table 22:		93

List of Figures

Figure No	Figure	Page No
Fig 1.[U/S of NOR	MAL LUNG]	4
Fig 2[seashore sign]		4
Fig 3 . (a ,b & c)		5
Fig 4 . Pneumothor	rax	7
Fig 5. Pleural effusi	on	9
Fig 6. A Lines		30
Fig 7. B Lines		31
Fig 8. Pneumothora	x	33
Fig 9 . A Stratosphe	ere sign on M mode	34
Fig 10		36
Fig 11 . Picture of n	nulti loculated cystic pleura	al effusion38
Fig 12 . Another Pic	cture of pleural effusion:	39
Fig 13. Lt Sided Ple	eural Effusion	40
Fig 14. Pleural effus	sion, lung consolidation& c	collapse:41
C	ing abscess leading to cons leural effusion:	•
Fig 16 . Pleural Effu	ısion	43
Fig 17.Pneumonia d	&Pleural Effusion	44
Fig 18 . Lung Colla	pse	45
Fig 19. Ultrasound	areas	47
Fig 20 Normal Lung	j	51

Figure No	Figure	Page No
Fig 21 . Interstitial	Syndrome	52
Fig 22 . Ultrasound	Profiles	53
Fig 23 . Blue Proto	ol	54
Fig 24 . Pulmonary	Infarction	57
Fig 25 . Pulmonar	y Embolism	57
Fig 26		58
Fig 27. Lt Sided Ple	eural Effusion	59
Fig 28		60
Fig 29		62
Fig 30. Lung Point		64
Fig 31		66
Fig 32		67
_	tree utilizing lung ultrasonog dyspnea	

List of Abbreviations

2D	Two-dimensional
B-mode	Brightness mode
CAP	Community-acquired pneumonia
Сс	Cubic centimeter
Cm	Centimeter

Introduction

Introduction

The chest ultrasound has become an attractive new tool for assessing lung status in ICU patients. There is a growing trend to be performed by physicians practicing in chest, intensive care .The aim of this study was to evaluate that chest ultrasound can be used easily at the bedside to assess lung morphology in hypoxemic patients and can be easily repeated to monitor progress and effect to therapy in critical care practice. [Moghekar A, Mehta A., et,al. 2014].

In critically ill ICU patients. there is a major problem of transportation so we have to use the bedside imaging modalities to diagnose the case as we can, however the X-ray provides limited information with exposure to radiation and on the other hand CT may be time consuming and cost more than other imaging modalite mainly in patient transportation. [Moghekar A, Mehta A.,et, al. 2014].

Ultrasound examination of the chest is a non- invasive imaging technique which gives information about the lungs, pleura and mediastinum &the chest wall without exposure to radiation and can be used safely in follow up. [Demi L, Demi M, et, al. 2014].

Ultrasonography in lung pathologies: appearance of the normal lung by ultrasound can be detected by lung sliding in association with multible horizontal A-lines and vertical B-lines. A-lines are lines parallel to the pleural line while B-lines are one or more vertical lines originate at the pleural interface. B-lines effacing the A lines and move with the pleural lines. [Refaat R, Abdurrahman LA., et , al. 2013].

The pleural line defined as hyper-echoic line moving forward and backward with ventilation and about 0.5 cm below the rib line. By (M-mode) there is motionless parietal tissue above the pleural line and homogenous pattern below the pleural line, this known as seashore sign (Fig. 1). [Refaat R, Abdurrahman LA., et, al. 2013].

Chest ultrasound plays an important role in diagnosis of different pathologies:

Pleural effusion:

An aechoic space present between the two layers of pleura. Different u/s signs can be detected with pleural effusion such a sinusoid sign, thoracic spine sign and, V-line sign. The amount of pleural fluid volume can be estimated with the simplified formula: V (ml) = 20 _ Sep (mm) where V is the volume of pleural fluid, and Sep is the maximal distance between parietal and visceral pleura in end expiration, the amount of fluid collection is considered an important factor in indications of thoracocentesis]. [Volpicelli G, Elbarba, et, al. 2012].

Fig 1.[U/S of NORMAL LUNG].

U/s of normal lung. The pleural line is a roughly horizontal hyper echoic line 0.5 cm below the upper and lower ribs identified by acoustic shadow (R) . It can be seen in dependent regions in normally aerated lung. [Refaat R, Abdurrahman LA., et, al. 2013].

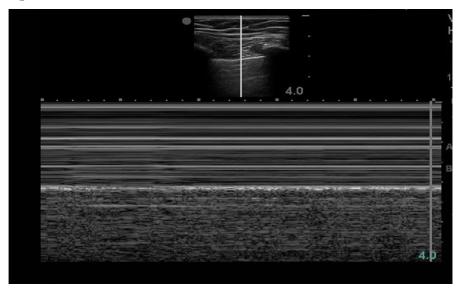


Fig 2[seashore sign].

Fig. 2. Normal lung ultrasound and characteristic seashore sign. [Adhikari S, Amini R,et,al.2014].

Fig 3 . (a ,b & c)

Fig. 3.(A case in radiological department), 23-years-old female patient with systemic lupus erythematous and chronic

kidney disease admitted to the intensive care unit and on mechanical ventilation. Large pleural collections with pleural separation equal to 37 mm "Sep measurement = 740 ml" on the right side (a), and equal to 40 mm "Sep measurement = 800 ml" on the left side (b). Ultrasound image using time motion mode (M-mode) demonstrating the sinusoid sign (c). This sign illustrates an undulation of the collapsed lung tissue within the pleural fluid, associated with multi A-lines of interstitial disease.

Lung consolidation:

diagnosed by ultrasound as an echo-poor or tissue like image. hypo echoic area of exudate. [Liu X-lei, Lian R, et, al, 2014].

Interstitial syndrome:

the A-lines play an important in diagnosis of diffuse interstitial pathology with thickened interlobular septa as well as areas of ground-glass opacity. [Volpicelli G, Melniker LA, et, al. 2013].

Pneumothorax:

by ultrasound pneumothorax can be diagnosed by absent lung sliding, as presence of lung sliding and/or B lines rule out diagnosis of pneumothorax. [Volpicelli G, Boero E, et,al. 2013].

Fig 4 . Pneumothorax
Pulmonary embolism (PE):

The following criteria can help in diagnosis of PE by ultrasound:

- 1) PE was considered if there was two or more triangular or rounded pleura-based lesions can demonstrated.
- 2) probable PE: one typical lesion with a corresponding lowgrade pleural effusion.
- 3) possible PE: nonspecific sub-pleural lesions <5 mm in size or a single pleural effusion alone.
- 4) PE not established: if there is normal chest ultrasound. [Squizzato A, Rancan E,et, al. 2013].

Neoplasms:

tumors in relation to the pleura can be assessed with ultrasound, lung tumors appear as predominantly hypo echoic masses. [Vollmer I, Gayete A., et ,al. 2010].

Chest wall masses:

different soft-tissue lesions arising from the chest wall can be easily detected by high-frequency US. Masses generally have variable echogenicity and US findings are too non-specific to differentiate between various etiologies. [Lichtenstein DA., et, al. 2014].