

Ain Shams University
Faculty of Engineering
Irrigation & Hydraulics Department

Investigating the encroachments impact on Nile River Hydrodynamic and Morphology

A THESIS
SUBMITTED FOR THE MASTER DEGREE OF
IRRIGATION AND HYDRAULICS FROM,
Irrigation & Hydraulics Department- Faculty of
Engineering-Ain Shams University

Prepared By
Eng. Amira Fouad Asaad Girgis
P. So. Civil Engineering [2001]

B.Sc. Civil Engineering - [2001]

Supervised By:

Prof. Dr. Ahmed A. Ali Hassan

Professor of Environmental Hydrology. Faculty of Engineering –Ain Shams University

Prof. Dr. Ahmed Moustafa A. Moussa

Professor of Engineering Hydraulics, Nile River Institute –Ministry of water resource and irrigation

Prof. Dr. Ashraf M. El Moustafa

Professor of Engineering Hydrology. Faculty of Engineering –Ain Shams University

Cairo, Egypt

2018

Investigating the encroachments impact on Nile River Hydrodynamic and Morphology Eng. Amira Fouad Asaad Girgis

A THESIS

SUBMITTED FOR THE MASTER DEGREE OF IRRIGATION AND HYDRAULICS FROM,

Irrigation & Hydraulics Department- Faculty of Engineering-Ain Shams University

Examiners committee

Name	signature
Prof .Dr. Medhat Saad Aziz The Head of Nile Research Institute National Water Research Center	
Prof .Dr. Mahmoud Samy Abdel Salam Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department	
Prof .Dr. Ahmed A. Ali Hassan Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department	
Prof .Dr. Ahmed Moustafa A. Moussa Nile Research Institute National Water Research Center	

Date 21/1/2018

To

My beloved parents, My Husband Tamer, My mother'in law ,My Daughters' Trinty and Trivya, my sisters(Isis, Jacklen & Abeer) And my brother (Amir)

ACKNOWLEDGEMENTS

First, I wish to give all my thanks to God for the completion of this work

I would like to express my thanks to my main supervisor *Prof. Dr. Ahmed A. Ali Hassan* for his valuable advice, enthusiastic, guidance and continuous encouragement towards the successful completion of the study.

I wish to express my deepest sense of gratitude and sincerest appreciation to the supervisor *Prof. Dr. Ahmed Mustafa A. Moussa*, for his helpful advice and valuable inspiration, he did not hesitate to provide his time for me and was always encouraging me to complete the study. Also, my deepest sense of gratitude and sincerest appreciation to the supervisor *Prof. Dr. Ashraf M. El Moustafa*,

Last but not least I wish to express my deepest thanks, gratitude, and appreciation to my devoted mother, my father, my mother's in law, my sisters and my husband for their love, warm caring, support, and, great patience throughout the time of this study. Finally, I want to thank everyone who helped or advised me during my work or even wished me good luck.

ABSTRACT

In terms of the importance of protecting the Nile River in Egypt to satisfy the social and economic developments, this research was commenced with the *main objective* of investigating the encroachment impacts on the flow characteristics and river morphology along the fourth reach which start in D.S Assuit barrages and ended at U.S Delta barrages

This research compared the changes of water level and morphology before and after encroachment during 2004-2014 for different floods scenario.

One dimensional mathematical model; "GSTARS3" which is considered the most suitable model to simulate the water surface profile and the sediment transport was used in this research. The model was calibrated for flow mode in 2004 and takes the result of calibration for sediment mode from previous studies which made from 1982 to 1997 and was verified from 1997 to 2004 using different sediment equations. The model results showed good agreements compared with actual measured data. The model was used also to simulate the flow in the future, and the results were analyzed and discussed

There was a general conclusion that deposition has more frequent occurrence than erosion on the bed for the whole reach during the past decades and also in the future. For the case of high flows in the future; especially in the places where the encroachment occurred will the water level raise and seeking the land on the sides also the bed will deposit more than now by 30%

List of Content

4	ACKNOWLEDGEMENTS	
4	ABSTRACT	
(CHAPTER 1: INTRODUCTION	. 1
	1. INTRODUCTION	2
	1.1 PROBLEM DEFINITION2	3
	1.2 RESEARCH OBJECTIVES	4

1. INTRODUCTION	2
1.1 PROBLEM DEFINITION2	3
1.2 RESEARCH OBJECTIVES	4
1.3 RESEARCH METHODOLOGY	4
1.4 THESIS ORGANIZATION	5
CHAPTER 2: LITERATURE REVIEW	7
2. LITERATURE REVIEW	8
2.1 THE NILE RIVER	8
2.2 HISTORICAL BACKGROUND OF HUMAN	
INTERVENTIONS	9
2.3 TYPES OF HUMAN INTERVENTIONS ON THE NILE	
RIVER1	. 1
2.4 THE FLUVIAL SYSTEM1	2
2.5. VARIABLES OF ALLUVIAL RIVERS 1	3
2.6 CHANNEL-FORMING DISCHARGE 1	5
2.7 LONGITUDINAL STREAM PROFILE	6
2.8 RIVER CLASSIFICATIONS	7
2.9. BED FORMS	2.2
2.10. RIVER BED DEGRADATION	24
2.11 .SEDIMENT TRANSPORT	28
2.11.1 ENGELUND AND HANSEN FORMULA (1972)3	0

2.1	1.2. ACKERS AND WHITE FORMULA (1973) 31
2.1	1.3. PARKER FORMULA (1990)
2.12 TYP	ES OF SIMULATION36
2.13. PHY	SICAL MODELS36
2.14. MA	THEMATICAL MODELS36
2.15. PRE	VIOUS STUDIES36
CHAPTER	3: DATA COLLECTION AND ANALYSIS 40
3. DATA CO	LLECTION AND ANALYSIS41
3.1 SITE I	DESCRIPTION41
3.2 THE C	COLLECTION DATA
3.2.1	HYDROLOGICAL DATA43
3.2.2	GEOMETRIC DATA
3.2.3	ROUGHNESS COEFFICIENTS
3.2.4	MORPHOLOGICAL CHANGES DATA DURING
	1982 TO 2004 50
3.2.5	GRAIN SIZE DISTRIBUTION51
3.2.6	ENCROACHMENT DATA
CHAPTER	4: IMPLEMENTED MODEL GSTARS 58
4. IMPLEME	NTED MODEL GSTARS 59
4.1 SEL	ECTING AN EFFICIENT TOOL "GSTARS" 59
4.2 THE	CORETICAL BACKGROUND OF GSTARS 60
4.3. COMPUT	TATIONS OF BACKWATER61
i I	ENERGY EQUATION61
ii I	MOMENTUM EQUATION61
4.4. SEDIME	NT TRANSPORT CONCEPT62
4.4.1.	MODEL HYPOTHESIS AND SEDIMENT
COMI	PUTATION62
4.5 PURPOS	E AND CAPABILITIES 64

4.6. ROOT MEAN SQUARED ERROR (RMSE)64
4.7. NUMERICAL MODEL CALIBRATION65
4.7.1 FOR FLOW MODEL CALIBRATION 65
4.8. MODLE CALIBRATION FOR MORPHOLOGY PHASE 70
4.9. NUMERICAL MODEL VERIFICATION71
4.9.1 MORPHOLOGY MODE VERIFICATION PHASE 71
CHAPTER 5: RESULTS AND DISCUSSION73
5. RESULTS AND DISCUSSION
5.1. IMPACT OF FLOW MODE74
5.2 IMPACT OF FLOW LEVELS DUE TO ENCROACHMENT 74
5.3. ANALYSIS OF CROSS SECTIONS GEOMETRY77
5.3.1. At Minimum Discharge (37.7 M.m ³ /day) critical case 78
5.3.2. Summary of the Result for the 37.7M.m3/d flow 99
5.3.3 Case 2: At Normal Discharge (Q=140 M.m ³ /day) 99
5.3.4. Summary of the Result for the 140 M.m ³ /d flow 110
5.3.5 Case 3: At Maximum Discharge (Q=181 M.m ³ /day) 110
5.3.6. Summary of the Result for the 181M.m ³ /d flow 121
5.3.7 Case 4: At future Discharge (Q=350 M.m ³ /day) 122
5.3.8. Summary of the Result for the 350M.m ³ /d flow 132
5.4 IMPACT OF ENCROACHMENT ON MORPHOLOGY AFTER
10 YEARS
5.4.1. Case 1: Minimum flow (37.7M.m ³ /day)
5.4.2. Summary of the Result for the 350M.m ³ /d flow 140
5.4.3. Case 2: Maximum flow (181M.m ³ /day)
5.4.4. Summary of the Result for the 181M.m ³ /d flow 148
5.5. SUMMARY OF THE RESULT148
5.5.1. Case 1: Minimum Discharge (37.7 M.m ³ /day)
5.5.2 Case 2: At Normal Discharge (140 M.m ³ /day)

	5.5.3. Case3: At Maximum Discharge (181 M.m ³ /day)	151
	5.5.4. Case 4: At Maximum Discharge (350 M.m ³ /day)	152
CHAP	TER 6: CONCLUSIONS AND RECOMMENDATIONS	153
6. CO	NCLUSIONS AND RECOMMENDATIONS	154
6.1 CC	ONCLUSIONS	154
6.2 RE	ECOMMENDATIONS	155
REFE	ERENCES	

List of Figure

Figure 1-1 the location of Reach Four
Figure 2-1 Nile River and its barrages
Figure 2-2 Fluvial System
Figure 2-3 Examples of Sinuous and Meandering Rivers
Figure 2-4 Channel rate as function of relative curvature r m /B 21
Figure 2-5 Channel rate as function of relative curvature r m /B 22
Figure 2-6 River Classification 22
Figure 2-7 Types of bed forms
Figure 2-8 Types of bed forms
Figure 2-9 Schematic of River Bed Degradation
Figure 2-10 (a,b,c) Effects of dams downstream alluvial reaches 31
Figure 2-11 Stream Load
Figure 2-12 σ 0 and ω 0 functions of ϕ sg in Parker equation
Figure 3-1 Location of the 4 th reach
Figure 3-2 Average monthly Water Level at D.S Assuit Barrages
during 2000-2014
Figure 3-3 Minimum, Mean and maximum actual discharge passing
D.S. Assuit Barrage (2000-2014)
Figure 3-4 Schematic diagram for the locations of the water level
gauge stations along the 4th reach
Figure 3-5 minimum and maximum actual Water Level at D.S.
Assuit Barrage 2000-2014
Figure 3-6 Maximum and Minimum Water Levels U.S Delta Barrage 51
Figure 3-7 Cross-Sections at KM (556.00) for the Years
1982- 1997
Figure 3-8 Grain Size Accumulation Curve for Bed material samples
in El Mania Governorate

Figure 3-9 Grain Size Accumulation Curve for Bed material samples
in Asuit Governorate
Figure 3-10 Grain Size Accumulation Curve for Bed material
samples in Beni Seuif Governorate
Figure 3-11 Filling encroachment removal in Assuit Governorate 58
Figure 3-12 Encroachment removal in Menia Governorate 59
Figure 3-13 Removal of encroachment in Beni Seuif Governorate 59
Figure 3-14 Filling encroachment removal in Giza Governorate 60
Figure 3-15 removing encroachment in El Safee –Beni Seuif 60
Figure 4-1 Schematic representation of stream tube concept
Figure 4-2 measured water levels obtained from water gauges 70
Figure 4-3 Mathematical model calibration, at Q=37.7 M.m ³ /day 73
Figure 4-4 Mathematical model calibration, at Q=140 M.m ³ /day 74
Figure 4-5 Mathematical model calibration, at Q=180 M.m ³ /day 75
Figure 4-6 Mathematical model calibration, at Q=350 M.m ³ /day 76
Figure 4-7 Water level at Q=37.7 M.m ³ /day
Figure 4-8 Water level at Q=140 M.m ³ /day
Figure 4-9 Water level at Q=180 M.m ³ /day
Figure 4-10 Water level at Q=350 M.m ³ /day
Figure 4-11 sediment verification by using Acker and White
formula80
Figure 5-1 water level at minimum discharge Q= 37.7 M.m ³ /day 81
Figure 5-2 Water level at discharge Q= 140 M.m ³ /day 84
Figure 5-3 Water level at minimum discharge Q= 180 M.m ³ /day 84
Figure 5-4 Water level at Maximum Discharge Q= 350 M.m ³ /day 85
Figure 5-5 Sec (1) at km 64.505 from El Roda Gauge
Figure 5-6 Sec (1) at km 64.505 (before and after encroachment) 87
Figure 5-7 Sec (2) at km 73.506 from El Roda Gauge

Figure 5-8 Sec (2) at km 73.504 (before and after encroachment) 89
Figure 5-9 Sec (3) at km 133.507 from El Roda Gauge
Figure 5-10 Sec (3) at km 133.507 (before and after encroachment) 90
Figure 5-11 Sec (4) at 145.507 km from El Roda Gauge
Figure 5-12 Sec (4) at km 145.507 (before and after encroachment) 91 $$
Figure 5-13 Sec (5) at 153.507 from El Roda Gauge
Figure 5-14 Sec (5) at km 153.507 (before and after encroachment) 93 $$
Figure 5-15 Sec (6) at km 168.508 from El Roda Gauge
Figure 5-16 Sec(6) at km 168.508 km (before and after
encroachment)95
Figure 5-17 Sec (7) at km 219.511 from El Roda Gauge
Figure 5-18 sec (7) at km 219.511 (before and after encroachment) 96
Figure 5-19 sec (8) at km 240.512 from El Roda Gauge
Figure 5-20 sec (8) at km 240.512 (before and after encroachment) 98
Figure 5-21 sec (9) at km 269.513 from El Roda Gauge
Figure 5-22 sec (9) at km 269.513 (before and after encroachment) 100
Figure 5-23 sec (10) at km 286.514 from El Roda Gauge 100
Figure 5-24 sec (10) at km 286.514 (before and after encroachment). 101
Figure 5-25 sec (1) at km 64.503 from El Roda Gauge
Figure 5-26 at 73.503km (before and after encroachment)
Figure 5-27 Sec (3) at km 133.507 (before and after encroachment). 106
Figure 5-28 Sec (4) at km 145.507(before and after encroachment) 107
Figure 5-29 Sec (5) at km 153.507 (before and after
encroachment)
Figure 5-30 Sec (6) at km 168.508 km (before and after
encroachment)
Figure 5-31 sec (7) at km 219.511 (before and after encroachment) 110

Figure 5-32 sec (8) at km 240.512 (water level before and after
encroachment)
Figure 5-33 sec (9) at km 269.513 (water level before and after
encroachment)
Figure 5-34 sec (10) at 286.514 (before and after encroachment) 113
Figure 5-35sec (1) at 64.505 (water level before and after
encroachment)
Figure 5-36 sec (2) at 73.506 (water level before and after
encroachment)
Figure 5-37 Sec (3) at km 133.507 (before and after encroachment). 118
Figure 5-38 Sec (4) at km 145.507 (before and after encroachment). 119
Figure 5-39 Sec (5) at km 153.507 (before and after encroachment). 120
Figure 5-40 Sec (6) at km 168.508 km (before and after
encroachment)
Figure 5-41 sec (7) at km 219.511 (before and after encroachment) 122
Figure 5-42 sec (8) at km 240.512 (before and after encroachment) 123
Figure 5-43 sec (9) at km 269.513 (before and after encroachment) 124
Figure 5-44 sec (10) at 286.514 (before and after encroachment) 125
Figure 5-45 sec (1) at 64.503 (before and after encroachment) 127
Figure 5-46 sec (2) at 73.514 (before and after encroachment) 128
Figure 5-47 Sec (3) at km 133.507 (before and after encroachment). 129
Figure 5-48 Sec (4) at km 145.507 (before and after encroachment). 130
Figure 5-49 Sec (5) at km 153.507 (before and after encroachment). 131
Figure 5-50 Sec (6) at km 168.508 km (before and after
encroachment)
Figure 5-51 sec (7) at km 219.511 (before and after encroachment)
Figure 5-52 sec (8) at km 240.512 (before and after encroachment) 134

Figure 5-53 sec (9) at km 269.513 (before and after encroachment) 135
Figure 5-54 sec (10) at km 286.514 (before and after encroachment).136
Figure 5-55 sec (1) at km 64.503
Figure 5-56 sec (2) at km 73.503
Figure 5-57 sec (3) at km 133.506
Figure 5-58 sec (4) at km 145.507
Figure 5-59 sec (5) at km 153.507
Figure 5-60 sec (6) at km 168.508
Figure 5-61 sec (7) at km 219.510
Figure 5-62 sec (8) at km 240.510
Figure 5-63 sec (9) at km 269.513
Figure 5-64 sec (10) at km 286.514
Figure 5-65sec (1) at km 64.503
Figure 5-66 sec (2) at km 73.503
Figure 5-67 sec (3) at km 133.506
Figure 5-68 sec (4) at km 145.507
Figure 5-69 sec (5) at km 153.507
Figure 5-70 sec (6) at km 168.508
Figure 5-71 sec (7) at km 219.510
Figure 5-72 sec (8) at km 240.510
Figure 5-73 sec (9) at km 269.513

Figure 5-74 sec (10) at km 286.514
Figure 5-75 comparison between the area before and after encroachment
Figure 5-76 comparison between the velocity before and after encroachment
Figure 5-77 comparison between the area before and after encroachment
Figure 5-78 comparison between the velocity before and after encroachment
Figure 5-79 comparison between the area before and after encroachment
Figure 5-80 comparison between the velocity before and after encroachment
Figure 5-81 comparison between the area before and after encroachment
Figure 5-82 comparison between the velocity before and after encroachment