Study of vitamin D level in Cirrhotic HCV Patients before and after transplantation

Thesis Submitted for partial fulfillment of master degree of Internal Medicine

Presented by

Hussein Salah Eldin Ibrahim Omar

M.B.B.Ch Faculty of Medicine

Under supervision of

Prof. Dr. Amira Ahmed Salem

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof. Dr. Wael Ahmed Yousry

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Ghada Abd El-Rahman Ahmed

Lecturer of internal Medicine Faculty of Medicine Ain Shams University

Faculty of Medicine - Ain Shams University 2018

الكبدى دراسة مستوى فيتامين د فى مرضى التليف الناتج عن الاصابة بالتهاب كبدى فيروسى سى مزمن قبل وبعد زراعة الكبد

توطئة للحصول على درجة الماجستير في الباطنة العامة رسالة مقدمة من

الطبيب/ حسين صلاح الدين إبراهيم عمر بكالوريوس الطب والجراحة كلية الطب

تحت إشراف

أ.د. أميرة أحمد سالم

استاذ الباطنة العامة كلية الطب جامعة عين شمس

أ.د. وائل أحمد يسرى

استاذ الباطنة العامة

كلية الطب جامعة عين شمس

د. غادة عبدالرحمن أحمد

مدرس الباطنة العامة كلية الطب جامعة عين شمس

Acknowledgements

"Above all, my deep thanks to **Allah**, the most kind and merciful, as we feel great care, support and guidance in every step in our life".

First of all, it is of great honor to work under the supervision of **Prof. Dr. Amira Ahmed Salem** Professor of Internal Medicine, Faculty of Medicine Ain Shams University, for her wise suggestions and planning research schedule. I gratefully acknowledge her for continuous guidance, encouragement, support and criticism which she offered with her kind open heart.

Also, it is pleasure to express my deepest appreciation to my supervisor **Prof. Dr. Wael Ahmed Yousry** Professor of Internal Medicine, Faculty of Medicine Ain Shams University. I am truly indebted and thankful for his valuable advices and time he has devoted in revising this thesis.

I am also thankful to **Dr. Ghada Abd El-Rahman Ahmed**Lecturer of Internal Medicine, Faculty of Medicine Ain Shams
University for her help and heartily support that made my task
easier.

Acknowledgements

Also I wish to express my deep appreciation to **Prof. Dr**. **Mohamed Bahaa Eldin Ahmed** professor of hepatobiliary surgery and liver transplantation, Ain Shams specialized hospital for his permission and help in collection of cases.

And I am also thankful to **Dr. Mona Ahmed Omar** the chemical science laboratory specialist, department of biochemistry, Faculty of Medicine Ain Shams University for her help in measuring the level of vitamin D in serum in all patients' blood samples that were collected for the study.

Hussein Salah Eldin Ibrahim

Content

Acknowledgement	I
Content	
List of Tables	IV
List of Figures	V
List of Abbreviations.	VI
Introduction and Aim of the Work	1
Review of Literature	
Chapter (1): Liver Cirrhosis	. 4
Chapter (2): Vitamin D	26
Chapter (3): Liver Transplantation	
Patients and Methods	62
Results	68
Discussion	82
Summary	88
Conclusion	90
Recommendations	91
References	92
Arabic Summary1	03

List Of Tables

Table	Subject	Page
1	Age in patients and control groups	68
2	Sex in patients and control groups	68
3	Comparison between Child score in patients and control groups	69
4	Comparison between MELD score in patients and control groups	70
5	Comparison between vitamin D level in patients and control groups	71
6	Comparison between Albumin level in patients and control groups	72
7	Comparison between bilirubin level in patients and control groups	73
8	Comparison between INR in patients and control groups	74
9	Comparison between Sodium level in patients and control group	75
10	Comparison between Haemoglobin in patients and control groups	76
11	Comparison between Hematocrit value in patients and control groups	77
12	Comparison between Calcium level in patients and control groups	78
13	Potassium, phosphorus, creatinine and total protein levels in patients and control groups	79

List Of Figures

Fig.	Subject	Page
1	Liver cirrhosis as seen on an axial CT abdomen	12
2	Portal vein and associated anatomy	14
3	Child score in patients and control groups	69
4	MELD score in patients and control groups	70
5	Vitamin D level in patients and control groups	71
6	Albumin level in patients and control groups	72
7	Bilirubin level in patients and control groups	73
8	INR in patients and control groups	74
9	Sodium level in patients and control groups	75
10	Haemoglobin in patients and control groups	76
11	Hematocrit in patients and control groups	77
12	Calcium level in patients and control groups	78

List Of Abbreviations

AASLD: The American association of liver diseases.

ADH: Antidiuretic hormone.

AFP: Alpha-feto protein.

AIH: Auto immune hepatitis.

AP: Alkaline phosphatase.

ATCR: Acute T- cell mediated rejection.

BMD: Bone mineral density.

BMI: Body mass index.

BP: blood pressure.

CDU: Colour Doppler ultrasonography.

CKD: Chronic kidney disease.

CNI: Calcineurin inhibitor.

CT: Computed tomography.

CVD: Cardiovasular disease.

DBP: Vitamin D binding protein.

ESRD: End stage renal disease.

ERCP: Endoscopic retrograde cholangio pancreatography.

HB core Ab: Hepatitis B core antibody.

HBsAg: Hepatitis B surface antigen.

HCV: Hepatitis C virus.

HCV Ab: Hepatitis C virus antibody.

HPS: Hepato pulmonary syndrome.

HRS: Hepatorenal syndrome.

HVPG: Hepatic venous pressure gradient.

IL: Interleukin. INF: interferone.

INR: International normalized ratio.

IOM: Institute of medicine.

IPVD: Intra Pulmonary vascular dilatation.

LKM: Liver kidney microsomal.

LT: Liver transplant.

MELD: Model of end stage liver disease.

List Of Abbreviations

MRCP: Magnetic resonance cholangio pancreatography.

NAFLD: Non alcoholic fatty liver disease.

PTC: Percutaneous transhepatic cholangiography.

PTH: Parathyroid hormone.

SBP: Subacute bacterial peritonitis.

T1DM: Type 1 diabetes mellitus.

Th-1: T- helper1. Th-2: T- helper2.

TIPS: Transjugular intrahepatic portosystemic shunt.

VDR: Vitamin D receptors.

Introduction

Egypt has the highest prevalence rate of hepatitis C virus (HCV) in the world, making it the most challenging public health problem facing the country (Esmat, 2013) Studies showed that 7% of the Egyptian population carry hepatitis C virus (HCV) RNA (Amr et al., 2015).

Liver cirrhosis occurs with untreated chronic hepatitis C virus infection, patients with cirrhosis are susceptible to a variety of complications, and their life expectancy can be markedly reduced, especially in those with acute on chronic liver failures (Gustot et al., 2015).

Vitamin D has been associated with chronic liver diseases and it has been reported that low vitamin D status is a common feature in different types of liver diseases (Christos et al., 2016).

According to recent studies, the prevalence of vitamin D insufficiency is higher in patients with chronic liver disease than in general population ranging between 64 and 92 % and it has been also reported that incidence of vitamin D deficiency increases as the liver disease progresses (Christos et al., 2016).

Introduction And Aim of The Work

Vitamin D has immunomodulatory effects with direct actions at dendritic cells, monocytes, macrophages, B-cell and T-cell functions considering that vitamin D and vitamin D receptors (VDR) are expressed by several cellular populations of the immune system such as T- helper 1(Th1) and T- helper 2 (Th2) (Christos *et al.*, 2016).

Introduction And Aim of The Work

Aim of the Work

The aim of this work is to study vitamin D level in post HCV liver cirrhosis patients before and six months after liver transplantation in addition to chronic HCV patients without cirrhosis.

Liver Cirrhosis

Cirrhosis is defined as histological development of regenerative nodules that are surrounded by fibrous bands in response to chronic liver injury which leads to portal hypertension and end stage liver disease (Savino *et al.*, 2015).

Hepatitis C Virus (HCV) infection is a major global health challenge, it is estimated that more than 170 million persons are chronically infected worldwide. Approximately 3.7 million persons in Egypt have chronic HCV infection in the age group 15-59 in 2015, with 7% of the Egyptian population carry hepatitis C virus (HCV) RNA (Amr et al., 2015) and (Aaron et al., 2016).

Pathophysiology

Persistent intrahepatic T helper 1 cell immune response and the role of numerous TH1-associated cytokines in chronic HCV infection have been documented and selective increase in chemokines and chemokine receptors that promote the accumulation of TH1 cells, has also been observed in chronic HCV infection. Despite the prominent activation of TH1 cells, their response is inadequate to eradicate the virus and produces a nonspecific chronic inflammatory response which finally leads to chronic liver injury. Significantly increased proportions of memory T cells and natural killer T

cells in portal venous blood were found in adult cirrhotic patients (Nikolaos et al., 2015) and (Marwa et al.2017).

Pathology

Macroscopically, the liver is initially enlarged, but with progression of the disease, it becomes smaller. Its surface is irregular with firm consistency. Depending on the size of the nodules there are three macroscopic types: micronodular, macronodular and mixed cirrhosis. Microscopic picture show the presence of regenerative nodules of hepatocytes surrounded by fibrous connective tissue that bridges between portal tracts (Mark, 2015).

Etiology

Most common causes of cirrhosis in the United States

- Hepatitis C (26%)
- Alcoholic liver disease (21%)
- Hepatitis C plus alcoholic liver disease (15%)
- Cryptogenic causes (18%)
- Hepatitis B (15%)
- Miscellaneous (5%)

Miscellaneous causes of chronic liver disease and cirrhosis

- Autoimmune hepatitis
- Primary biliary cirrhosis
- Primary sclerosing cholangitis
- Hemochromatosis

- Wilson disease
- Alpha-1 antitrypsin deficiency
- Type IV glycogen storage disease
- Drug-induced liver disease (e.g. methotrexate, alpha methyldopa, amiodarone)
- Venous outflow obstruction (e.g. Budd-Chiari syndrome, veno-occlusive disease)
- Cardiac cirrhosis

Chronic Hepatitis C (HCV) is one of the major causes of liver cirrhosis in Western Countries and approximately 10–20% of infected patients have cirrhosis at the time of clinical presentation (Savino *et al.*, 2015).

Genotypes

HCV is a spherical, enveloped, single-stranded RNA virus belonging to the Flaviviridae family and Flavivirus genus. There are six major genotypes and several subtypes of the virus.

HCV genotypes differ 30-35% at the nucleotide level, and differences between subtypes within a single genotype are approximately 15% (Anupriya, 2015).

Distribution of the HCV genotypes varies worldwide. Genotypes 1, 2, and 3 show relatively broad geographical distribution, whereas genotypes 4, 5, 6 are more confined to specific geographic regions.