

The Diagnostic accuracy of Ultrasound Guided Fine Needle Aspiration Biopsy for Dominant Nodules in Multinodular Goiter

Thesis

Submitted for Partial Fulfillment of Master Degree in General Surgery

Presented by Ahmed Mohamed Rushdi *M.B.B.ch.*, (2009)

Under Supervision of

Prof.Dr.Abd Elrahman Mohamed Elmaraghy

Professor of General and Endocrine Surgery Faculty of Medicine - Ain Shams University

Prof. DR. Mahmoud Saad Farahat

Professor of General and Endocrine Surgery Faculty of Medicine - Ain Shams University

DR. Mohamed Mahmoud Elsayed

Lecturer of General and Endocrine Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018


First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Abd Elvahman Mohamed Elmaraghy**, Professor of General and Endocrine Surgery Faculty of Medicine - Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof.** DR. Mahmoud Sand Farahat, Professor of General and Endocrine Surgery Faculty of Medicine - Ain Shams University for his sincere efforts, fruitful encouragement.

I am deeply thankful to **DR.** Mohamed Mahmoud **Elsayed**, Lecturer of General and Endocrine Surgery Faculty of Medicine - Ain Shams University for his great help, outstanding support, active participation and guidance.

Ahmed Mohamed Rushdi

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	14
Review of Literature	
 Anatomy and Histology of Thyroid Gland 	15
Physiology of Thyroid Gland	40
Pathology of Thyroid Nodules	44
Types of Different Thyroid Biopsies	65
Patients and Methods	
Results	91
Discussion	97
Summary	104
Conclusion	
References	107
Arabic Summary	

List of Tables

Table No.	Title Page N	V 0.
Table (1):	Increased risk of malignancy in thyroid	
	nodule on history and physical exam	
Table (2):	Physiologic effects of thyroid hormones	42
Table (3):	Aggressive variants of papillary carcinoma	
	compared to classic papillary carcinoma	58
Table (4):	Recommendations for diagnostic FNAC based	
	on size and US features	75
Table (5):	FNAC size cutoff and risk of malignancy	
10.010 (0)	according to sonogrpahic pattern	
Table (6):	Diagnostic results according to fine-needle	• •
Tuble (0).	aspiration cytology	93
Table (7):		50
Table (7):	Final histopathological test results according	0.4
TD 11 (0)	to biopsies	94
Table (8):	Correlation between fine-needle aspiration	
	and final histopathology	
Table (9):	Final thyroid fine-needle aspiration results	
	for the diagnosis of carcinoma in patients	
	with multinodular goiter	95

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2): Figure (3):	Anatomy of thyroid gland Anatomy of thyroid gland (muscle of Variation in anatomic relationship recurrent laryngeal nerve as	ut)18 os of the
T	tuberculum Zuckerkandl	20
Figure (4):	Thyroid pyramidal lobe (neck ventral v	
Figure (5):	Arterial supply of thyroid gland	
Figure (6):	Venous drainage of thyroid gland	
Figure (7):	Posterior and lateral views of the laryngeal nerves in the chest and they course in the tracheoesophage and innervate the larynx	neck as al groove
Figure (8):	Variable relationship of the laryngeal nerve and the branches of thyroid artery	recurrent of inferior
Figure (9):	Anatomic variation in the course nonrecurrent laryngeal nerve as i along the inferior thyroid artery directly to the larynx at the leve superior pole of the thyroid (B). Fewith permission	e of the travels y (A) or el of the Reprinted
Figure (10):	The variation in the course of the branch of the superior laryngeal ne respect to the superior thyroid ar	external erve with tery and
	superior thyroid pole	
Figure (11):	Histology slides of thyroid gland	
Figure (12):	C cells of thyroid gland	
Figure (13):	Chronic lymphocytic (Hashimoto) the in FNAC specimen demonstrates lymphocytic thyroiditis, as represelymphocytes in the background	chronic ented by
Figure (14):	Sub acute thyroditis	
G = -/•	······································	

List of Figures Cont...

Fig. No.	Title Page N	0.
Figure (15):	Gross appearance of multinodular goiter showing areas of hemorrhage and necrosis	52
Figure (16):	Papillary thyroid carcinoma	
Figure (17):	Papillary thyroid carcinoma showing the	
J	diagnostic feature orphan Annie eye nuclei	58
Figure (18):	Follicular thyroid carcinoma	
Figure (19):	Follicular thyroid carcinoma	60
Figure (20):	Medullary thyroid carcinoma	62
Figure (21):	Medullary carcinoma	63
Figure (22):	Anaplastic thyroid carcinoma in 63 years old male	63
Figure (23):	Material for fine-needle aspiration biopsy of the thyroid gland	67
Figure (24):	Material for specimen preparation following fine-needle aspiration biopsy of thyroid nodule picture	
Figure (25):	Patient positioning for thyroid nodule biopsy with cervical hyperextension	
Figure (26):	Demonstration of fine-needle aspiration of a thyroid nodule guided by palpation	70
Figure (27):	Transverse technique for ultrasound guided fine-needle aspiration biopsy of a thyroid	71
Eigen (99).	nodule	11
Figure (28):	Longitudinal technique for ultrasound guided fine-needle aspiration of a thyroid	79
Figure (29):	Ultrasound image of longitudinal technique of fine-needle aspiration of right thyroid	13
	nodule	74
Figure (30):	Management of thyroid nodule	85

List of Abbreviations

Abb.	Full term
⁹⁹ Tc	Technetium pertechnetate
AACE	American Association of Clinical Endocrinologists
ATA	American Thyroid Association
AUS	Atypia of undetermined significance
CGRP	Calcitonin gene related peptide
CNB	Core needle biopsy
CT	Computed tomography
EBSLN	External branch of the superior laryngeal nerve
<i>EGF</i>	Epidermal growth factor
FDG	Fluorodeoxyglucose
FLUS	Follicular lesion undetermined significance
FN	Follicular neoplasm
FNAC	Fine-needle aspiration cytology
H&E	Hematoxylin and eosin
IBSLN	Internal branch of the superior laryngeal nerve
IGF-1	Insulin-like growth factor-1
ITA	Internal thoracic arteries
<i>ITC</i>	Insular thyroid cancer
<i>LGT</i>	Levator glandulae thyroideae
MEN	Multiple endocrine peoplasia

List of Abbreviations Cont...

Full term Abb. MIFC...... Minimally invasive follicular carcinoma MNG Multinodular goiter MNGs..... Multinodular goiters MRI...... Magnetic resonance imaging MTC..... Medullary thyroid carcinoma NMTC......Non-medullary thyroid carcinoma PTCPapillary thyroid carcinoma RLN Recurrent laryngeal nerve SCN.....Solid cell nests SFN...... Suspicious for a follicular neoplasm SLN.....Superior laryngeal nerve TE Tracheoesophageal TNF-alfa..... Tumour necrosis factor-alpha TSH...... Thyroid stimulating hormone US...... Ultrasonography WHO World health organization WIFC...... Widely invasive follicular carcinoma

Introduction

Thyroid nodule is a discrete lesion in the thyroid gland that is radiologically distinct from the surrounding thyroid parenchyma (*Haugen et al.*, 2016).

Thyroid nodules are common; their prevalence in the general population is high, the percentages vary depending on the mode of discovery: 2–6 % (palpation), 19–35 % (ultrasound) and 8–65 % (autopsy data) (*Dean and Gharib*, 2008).

They are discovered either clinically on self-palpation by a patient, or during a physical examination by the clinician or incidentally during a radiologic procedure such as ultrasonography (US) imaging, computed tomography (CT) or magnetic resonance imaging (MRI) of the neck, or fluorodeoxyglucose (FDG) positron emission tomography. With the increased use of sensitive imaging techniques, thyroid nodules are being diagnosed incidentally with increasing frequency in the recent years (*Li et al.*, 2013).

Multinodular goiter (MNG) is defined as the palpation of multiple discrete nodules in the enlarged thyroid gland. Etiology and pathogenesis of MNG is not very clear. A mild dietary deficiency of iodine, slight impairment of hormones synthesis, increased iodide clearance from the kidney and presence of thyroid stimulating immunoglobulins have been suggested as the various causes (Memon et al., 2004).

MNG is a risk factor for epidemiologically ascertained thyroid malignancy. Epidemiologically studies have demonstrated the incidence of malignancy in patient with MNG was higher than the incidence of general population (Sarda and Kapur, 2005).

Traditionally patients with MNG have been considered less at risk of malignancy than those with single nodule. However, published reports show that the incidence of malignancy in patients with single nodule dose not differ from those with MNG (Rios et al., 2005).

Initial assessment of a patient found to have a thyroid nodule either clinically or incidentally should include a detailed and relevant history plus physical examination. Laboratory tests should begin with measurement of serum thyroid-stimulating hormone (TSH). Thyroid scintigraphy/radionuclide thyroid scan should be performed in patients presenting with a low serum TSH (Haugen et al., 2016).

Comprehensive history with focus on risk factors predicting malignancy should be part of the initial evaluation of a patient with thyroid nodule. Symptoms of hypothyroidism or hyperthyroidism should be assessed. Patients should be questioned about local pressure symptoms such as difficulty in swallowing or breathing, cough and change in voice (Gharib et *al.*, *2016*). (Table 1)

Table (1): Increased risk of malignancy in thyroid nodule on history and physical exam (Gharib et al., 2016).

- History of childhood head/neck irradiation
- Total body irradiation for bone marrow transplantation
- Exposure to ionizing radiation from fallout in childhood or adolescence
- Family history of PTC, MTC, or thyroid cancer syndrome (e.g., Cowden's syndrome, familial polyposis, Carney complex, multiple endocrine neoplasia [MEN] 2, Werner syndrome)
- Enlarging nodule/rapid nodule growth
- Cervical lymphadenopathy
- Fixed nodule to surrounding tissue
- Vocal cord paralysis/hoarseness

Imaging studies

Radionuclide thyroid scan/scintigraphy

Scintigraphy, a diagnostic test used in nuclear medicine, utilizing iodine radioisotopes (more commonly used; usually ¹²³I) or technetium pertechnetate (99Tc), measures timed radioisotope uptake by the thyroid gland. The uptake of the radioisotopes will be greater in hyperfunctioning nodule and will be lower in most benign and virtually all malignant thyroid nodules than adjacent normal thyroid tissue (Reschini et al., 2006).

Thyroid sonography/ultrasound

Thyroid ultrasound should be performed in all those suspected or known to have a nodule to confirm the presence of a nodule, evaluate for additional nodules and cervical lymph

nodes and assess for suspicious sonographic features. The next step in the evaluation of a thyroid nodule, if they meet the criteria as discussed later, is a fine needle aspiration (FNAC) cytology (Castro and Gharib, 2005).

The recent ATA guidelines classify nodules into 5 risk groups based on US results. However, the current AACE guidelines suggest a more practical, 3-tier risk classification: low risk, intermediate risk and high risk thyroid lesions, based on their US characteristics (Gharib et al., 2016).

The nodular characteristics that are associated with a higher likelihood of malignancy include a shape that is taller than wide measured in the transverse dimension. hypoechogenicity, irregular margins, microcalcifications, and absent halo (Remonti et al., 2015).

The feature with the highest diagnostic odds ratio for malignancy was suggested to be the nodule being taller than wider. The more suspicious characteristics that the nodule has, it increases the likelihood of malignancy. In contrast, benign nodule predicting US characteristics include purely cystic nodule (<2 % risk of malignancy) spongiform appearance (99.7 % specific for benign thyroid nodule) (Brito et al., 2014).

AIM OF THE WORK

The aim of this study is to discuss the accuracy of Ultrasound guided FNAC technique in diagnosis of pathological types of dominant nodule in multinodular goiter.

<u>Chapter One</u>

ANATOMY AND HISTOLOGY

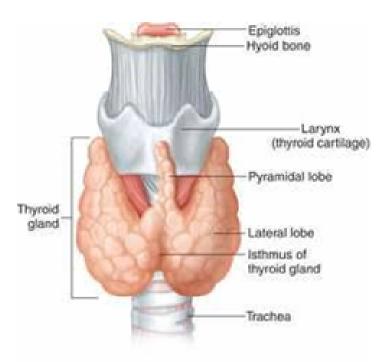


Figure (1): Anatomy of thyroid gland (Patton and Thibodeau, 2010).

Embryology of thyroid gland

The development of thyroid gland begins by the third week of gestation and ends by the eleventh week. The primordium of the medial part of the thyroid gland appears during the third week of gestation as an epithelial proliferation in the floor of the pharynx immediately caudal to the tuberculum impar at the border of the first and second pharyngeal pouches (Sadler and Langman, 2006).