Difficult Glycemic Control in Relation to the Presence of Diabetes-Autoantibodies among Type 1 Diabetic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Endocrinology & Metabolism

By

Noha Yehia Mohammed MB BCh

Supervised by

Professor Dr. Mohammed Saad Hamed

Professor of Internal Medicine & Endocrinology Ain Shams University

Ass. Professor Dr. Merhan Samy Nasr

Assistant Professor of Internal Medicine & Endocrinology Ain Shams University

Dr. Hanan Mahmoud Ali

Lecturer of Internal Medicine & Endocrinology Ain Shams University

> Faculty of Medicine Ain shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

At first and foremost all praises and thanks to "ALLAH" who gave me the power to finish this work.

No words can ever express my deepest appreciation and gratitude to **Professor Dr.**Mohammed Saad Toamed, Professor of Internal Medicine & Endocrinology, Ain Shams University, for his outstanding kind support, precious suggestions and continuous guidance throughout all stages of this work.

I would like to thank **Dr. Merhan Samy Masr, Assistant Professor of Internal Medicine & Endocrinology,** Ain Shams University, who was very kind, supportive and helpful throughout this project.

My great respect and thanks to **Dr. Hanan**Mahmoud Ali, Lecturer of Internal Medicine &
Endocrinology, Ain Shams University, for her morals,
scientific support and continuous encouragement that
helped me to finish my job smoothly.

My deepest thanks are also to **Dr. Mesma Ali Ibrahim, Lecturer of Internal Medicine & Endocrinology,** Ain Shams University, for her close clinical supervision and kind help.

I am also deeply grateful to my dear family, for their great support and help offered throughout this study.

Noha Yehia

List of Contents

Title	Page No.
List of Tables	5
List of Figures	8
List of Abbreviations	11
Introduction	1
Aim of the Work	4
Review of Literature	
Diabetes Mellitus	5
Diabetes Autoantibodies	
Autoantibodies and Their Effect on the Gly	cemic
Control	60
Patients and Methods	63
Results	76
Discussion	109
Summary	119
Conclusion	125
Recommendations	126
References	127
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Etiologic classification of MODY	12
Table (2):	Screening for diabetes and prediabete asymptomatic children and adults	
Table (3):	Diagnosis of diabetes mellitus	23
Table (4):	Pharmacological therapy of diabetes	28
Table (5):	Insulin types and pharmacokinetics	30
Table (6):	Descriptive analysis for all studied pa as regarding demographic, anthropon clinical data and duration of dia mellitus	netric, abetes
Table (7):	Descriptive analysis for all studied pa as regarding the number of insulin used, laboratory data (FBS, 2HPP, H Cpeptide) and the presence of dia autoantibodies	units bA1C, abetes
Table (8):	Descriptive analysis for the distribut diabetes autoantibodies among Group I	
Table (9):	Comparison between Group I and Group I are garding demographic, anthropon clinical data and duration of devel diabetes mellitus	netric, loping
Table (10):	Comparison between Group I and Group I are garding the number of insulinused and the laboratory data (FBS, 2 HbA1C, Cpeptide)	units 2HPP,
Table (11):	Comparison between Group II a, II b ar as regarding demographic, anthropon clinical data and duration of deve- diabetes mellitus	netric, loping

List of Cables (Cont...)

Table No.	Title	Page No.
Table (12):	Comparison between Group II a, II b an as regarding the number of insulin used, laboratory data (FBS, 2HPP, Hk Cpeptide)	units oA1C,
Table (13):	Comparison between patients with neg GADA and patients with positive of among Group II as regarding demogra anthropometric, clinical data and durat developing diabetes mellitus	GADA aphic, ion of
Table (14):	Comparison between patients with neg GADA and patients with positive of among Group II as regarding the number insulin units used and the laboratory (FBS, 2HPP, HbA1C, Cpeptide)	GADA ber of data
Table (15):	Comparison between patients with neg ICA and patients with positive ICA a Group II as regarding demogra anthropometric, clinical data and durat developing diabetes mellitus	mong aphic, ion of
Table (16):	Comparison between patients with neg ICA and patients with positive ICA a Group II as regarding the number of in units used and the laboratory data 2HPP, HbA1C, Cpeptide)	mong nsulin (FBS,
Table (17):	Comparison between patients with neg IAA and patients with positive IAA a Group II as regarding demogra anthropometric, clinical data and durat developing diabetes mellitus	mong aphic, ion of

List of Cables (Cont...)

Table No.	Title	Page No.
Table (18):	Comparison between patients with negative IAA and patients with positive IAA and Group II as regarding the number of instruction units used and the laboratory data (22 HPP, HbA1C, Cpeptide)	nong sulin FBS,
Table (19):	Correlation between GADA, ICA and with the other studied parameters	
Table (20):	Logistic regression analysis for predicto cases with positive Abs	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Polyol pathway	17
Figure (2):	Insulin activity profile	31
Figure (3):	Schematic representation showing in trans-differentiation of insulin-proceeds IPC from mesenchymal stem cells	ducing
Figure (4):	Formation of memory Bcells and placells	
Figure (5):	Diabetes autoantibodies' mechanis	
Figure (6):	Diagrammatic representation of hal of immunoglobulins in the circulation	
Figure (7):	Anti-GAD antibodies	48
Figure (8):	Stiff person syndrome Exagge lumbar lordosis	
Figure (9):	Exaggerated lumbar lordosis and extensor posturing in the stiff syndrome	man
Figure (10):	Mucosal-administered insulin pr from type 1 diabetes mellitus	
Figure (11):	Biological effects of anti-CD3 antikon T cells	
Figure (12):	Gender distribution of the population.	•
Figure (13):	Percentage of Group I and Group II	80
Figure (14):	Percentage of Group II a, Group II Group II c	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (15):	Percentage of GADA positivity a	
Figure (16):	Percentage of ICA positivity a Group II.	
Figure (17):	Percentage of IAA positivity a Group II.	_
Figure (18):	Bar chart showing the duration diabetes mellitus among Group I Group II.	and
Figure (19):	Bar chart showing Insulin units in I and Group II.	
Figure (20):	Bar chart showing HbA1c level Group I and Group II.	
Figure (21):	Bar chart showing the duration diabetes mellitus in Group II a, Group II c	oup II
Figure (22):	Bar chart showing HbA1c level in GII a, Group II b and Group II c	
Figure (23):	Bar chart demonstrating the dura DM in patients with negative GADA those with positive GADA among G	A and Group
Figure (24):	Bar chart demonstrating the ag patients with negative GADA and with positive GADA among Group II	those
Figure (25):	Bar chart demonstrating the heig patients with negative GADA and with positive GADA among Group II	those

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (26):	Bar chart demonstrating HbA1c le patients with negative GADA and with positive GADA among Group II	those
Figure (27):	Bar chart showing the duration of dimellitus in patients with negative IC those with positive ICA among Group	A and
Figure (28):	Bar chart showing HbA1c lev patients with negative ICA and with positive ICA among Group II	those
Figure (29):	Bar chart showing HbA1c lev patients with negative IAA and with positive IAA among Group II	those
Figure (30):	High significant negative correbetween GADA level and duratidiabetes mellitus.	on of
Figure (31):	Significant positive correlation be GADA level and HbA1c level	
Figure (32):	Significant positive correlation be IAA level and HbA1c level	
Figure (33):	High significant positive correbetween GADA and ICA levels	
Figure (34):	High significant positive correbetween GADA and IAA levels	
Figure (35):	High significant positive corre	

List of Abbreviations

Abb.	Full term
ACEIo	Angiotonain conventing anguma inhibitana
	Angiotensin-converting enzyme inhibitors American Diabetes Association
	Advanced glycosylation end products
	Angiotensin receptor blockers
	Body mass index
	Certified diabetes educator
	Continuous subcutaneous insulin infusion
	Diabetes autoantibodies
<i>DCCT</i>	Diabetes Control and Complications Trial
<i>DKA</i>	Diabetic ketoacidosis
<i>DM</i>	Diabetes mellitus
<i>DPP-4</i>	Dipeptidyl peptidase-4
<i>DSME</i>	Diabetes self-management education
<i>EASD</i>	European Association for the Study of Diabetes
ELISA	Enzyme Linked ImmunoSorbent Assay
<i>FPG</i>	Fasting Plasma Glucose
<i>GABA</i>	Gamma-AminoButyric Acid
<i>GADA</i>	Glutamic Acid Decarboxylase Autoantibodies
<i>GDM</i>	Gestational Diabetes mellitus
GLP1	Glucagon like peptide 1
	Glycosylated hemoglobin
	Hyperglycemic hyperosmolar state
	Human leukocyte antigen
	3-hydroxy-3-methyl-glutaryl-coenzyme A
	Hepatocyte nuclear factor 1alpha
	Hepatocyte nuclear factor 1beta
_	Hepatocyte nuclear factor 4 alpha
	Hepatocyte nuclear factor 4 alpha Homeostatic model assessment of insulin
HUMA III	resistance

List of Abbreviations (Cont...)

Abb.	Full term
IAA	Insulin Autoantibodies
	Islet Cell Cytoplasmic Autoantibodies
	Insulin Dependent Diabetes Mellitus
	Insulin promotor factor 1
	Latent Autoimmune Diabetes of Adults
	Multiple daily injections
	Major Histocompatibility Complex
	Maturity Onset Diabetes of Young
	Non obese diabetic mice
NGSP	National Glycohemoglobin Standardization
	Program
OGTT	Oral Glucose Tolerance Test
<i>RBS</i>	$Random\ Blood\ Sugar$
SGLT-2	Selective sodium glucose transporter-2
<i>SHBG</i>	Sex hormone binding globulin
<i>TDD</i>	Total daily dose
<i>TIA</i>	Transient ischemic attack
<i>WHO</i>	World Health Organization
2HrPP	2 hours postprandial blood glucose

ABSTRACT

The present study revealed that the most common auto-antibody found in those patients was the GADA, it was found in 94.4% of patients, while ICA and IAA were found in 83.3% and 66.7 % respectively.

The present study also showed a high statistically significant positive correlation between GADA level and HbA1c levels (r = 0.361**, P=0.005) on the other hand there was a highly statistically significant negative correlation between GADA level and the duration of diabetes mellitus ($r = -0.437^{**}, P=0.000$) also it revealed a statistically significant positive correlation between IAA level and HbA1c level (r = 0.305*, P=0.018).

By doing the multivariate regression analyses we found that HbA1c level, total number of insulin units per day and the duration of developing diabetes mellitus were significant predictive factors for the presence of diabetes autoantibodies; (P=0.007), (P=0.033) and (P=0.043) respectively.

Keywords: Insulin Autoantibodies - Hepatocyte nuclear factor 4 alpha

INTRODUCTION

iabetes mellitus is a clinic-laboratory characterized by chronic hyperglycemia due to defect in insulin secretion or action or both leading to disturbance of metabolism of carbohydrate, protein, fat, water and electrolytes.

Diabetes mellitus is the leading cause of chronic renal failure, lower limb amputations and adult blindness (Gupta and Mukherjee, 2014).

There are three main types of Diabetes mellitus: type 1 DM, type 2 DM and Gestational diabetes mellitus (American Diabetes Association, 2017).

An expert committee of the American Diabetes Association has recommended dividing type 1 DM into type 1A (immune-mediated) and type 1B (other forms of type 1 DM that include virus-triggered autoimmune response in which the immune system attacks virus-infected cells along with the beta cells in the pancreas (Coxsackie virus family or Rubella), genetic factors and idiopathic (Imagawa et al., 2000).

Autoantibodies are strongly associated with development of type 1 diabetes mellitus. The appearance of autoantibodies to one or more of the auto-antigens (Glutamic acid decarboxylase 65, Islet cell cytoplasm, or Insulin) signals an autoimmune pathogenesis of β -cell killing (Ziegler et al., 2013).

Although their appearance does not follow a distinct pattern, the presence of multiple autoantibodies has the highest positive predictive value for type 1 diabetes mellitus (Pihoker et al., 2005).

It is widely recognized that the presence of two or more auto-antibodies has a high sensitivity and specificity for rapid progression to insulin dependency within 5 years and may help clarify the diagnosis in some patients (Ziegler et al., 2013), In cases in which no evidence of autoimmunity can be detected, the classification used is idiopathic type 1 DM (American Diabetes Association, 2014).

The autoantibodies that are associated with type 1 diabetes include (GAD65, ICA and IAA) (*Bingley*, 2010).

GADA65 is the most commonly detected autoantibodies in newly diagnosed type 1 diabetics, it is positive in 75% of patients at time of diagnosis (Anna and Waytt, 2017).

GADA is an autoantibody directed towards Glutamic acid decarboxylase GAD the enzyme that synthesizes gammaamino-butyric acid GABA from glutamic acid, GAD is present in 'GABA-ergic' nerve cells and non-neural cells and organs such as the pancreas, where GABA is stored in synaptic-like vesicles in islet beta cells, GABA plays a role in the release of insulin, therefore the presence of GAD autoantibodies cause depleted insulin secretion (Fiorina, 2013).