Cerebral Microbleeds and Cognition in Patients with Symptomatic Small Vessel Disease

Thesis

Submitted for Partial Fulfillment of the Master Degree in Neurology and Psychiatry

Presented By

Kholoud Mahmoud Abdullah M.B.B.CH

Under Supervision of

Prof. Dr. Hany Mahmoud Zakieldine

Professor of Neurology and Psychiatry Faculty of Medicine - Ain Shams University

Dr. Iman Mohamed Bayomy

Consultant of Neurology and Psychiatry Faculty of Medicine - Ain Shams University

Dr. Mona Mokhtar Wahideldin

Lecturer of Neurology and Psychiatry Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hany Mahmoud Zakieldine**, Professor of Neurology and Psychiatry, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Iman Mohamed Bayomy**, Consultant of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mona Mokhtar Wahideldin**, Lecturer of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I could not forget while writing these words the effort and support that was provided by **Dr. Mareyse Youseff**Awadallah, Asisstant Professor of Radiology, Faculty of Medicine, Cairo University, and Yousseff Awadallah
Radiology Centre. They made a great example for encouraging medical research and providing better chances for scientific work.

Finally, i would like to express my gratitude to everyone who helped me in this work. My great parents, who always gave me love and support. My husband, who has always been my backbone, supporting me in the hardest of times and handling my absence with love. My two lovely kids, "Eyad and Omar" who gave me hope and courage in every day battle. Thanks all for making it possible when I thought it wasn't.

Kholoud Mahmoud Abdullah

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	
Introduction	
Aim of the Study	3
Classification of Cerebral Small Vessel Diseases	s4
Cerebral Microbleeds	16
Subjects and Methods	44
Results	
Discussion	98
Summary and Conclusion	
Recommendations	
References	110
Appendix	138
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Aetiopathogenic classification of cerebry vessel diseases	
Table (2):	Standard criteria for CMBs identific MRI and their rationale	
Table (3):	Age differences in the study group	50
Table (4):	Sex and years of education difference two groups	
Table (5):	Risk factors in both positive and groups	
Table (6):	Risk factors regarding location of MBs	55
Table (7):	Classification of Microbleeds severity positive group	
Table (8):	Distribution of microbleeds	58
Table (9):	Comparison between groups according MRI Parameters	
Table (10):	Comparison between groups according score of MoCA test	
Table (11):	MoCA test in CMB Positive group	61
Table (12):	MoCA test in CMB Negative Group	63
Table (13):	Demographic data differences betwee CMB positive and CMB negative group	
	Cerebrovascular risk factors differed both study groups	
Table (15):	Cerebrovascular risk factors according and non-deep located CMBs	-
Table (16):	Antiplatelets intake differences betwee positive and negative groups	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (17):	Antiplatelets count differences between positive and negative groups	
Table (18):	MRI parameters compared between positive and negative groups	
Table (19):	Relation between personal and clinic and MoCA test	
Table (20):	Comparison between groups accord MoCA test	_
Table (21):	Relation between occipital CMBs and test	
Table (22):	Relation between Frontal CMBs and test	
Table (23):	Relation between Temporal CMBs and test	
Table (24):	Relation between Parietal CMBs and test	
Table (25):	Relation between Basal ganglia CM MoCA test	
Table (26):	Relation between Thalamus CMBs an test	
Table (27):	Relation between Cerebellum CM MoCA test	
Table (28):	Relation between Brain stem CM MoCA test	
	Partial correlation between MoC	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (30):	Correlations between Frontal CN cognitive indices after controlling parameters	different
Table (31):	Correlations between Parietal CN cognitive indices after controlling parameters	different
Table (32):	Correlations between Basal ganglia C cognitive indices after controlling parameters	different

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathogenesis of brain damage as a small vessel disease	
Figure (2):	MRI manifestations of cerebral vessel disease	
Figure (3):	The topography of sporadic cerebra vessel disease and its MRI featu shown in this schematic representa	res are
Figure (4):	A proposed model of pathophysiological pathways the give rise to cerebral microbleeds	at can
Figure (5):	Frequency of cerebral microble different populations and disease s	
Figure (6):	Bar chart between groups accor age (years)	
Figure (7):	Bar chart between groups accor Metabolic risk factors and medicat	-
Figure (8):	Pie chart level of microbleeds sev CMB positive group	•
Figure (9):	Sex differences between CMB and negative groups	•
Figure (10):	Hypertension differences between positive and negative groups	
Figure (11):	Risk factors in deep and non-deep MBs.	
Figure (12):	Antiplatelets medication between positive and negative groups	
Figure (13):	MRI parameters compared between positive and negative groups	

List of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (14):	Bar chart between groups according to MoCA test.	
Figure (15):	Relation between Frontal CMBs and MoCA test	
Figure (16):	Relation between Parietal CMBs and MoCA test.	
Figure (17):	Relation between Basal ganglia CMBs and MoCA test.	
Figure (18):	Scatter plot between total microbleeds and MoCA test irrespecting location in CMB positive group (r = -0.898; p=<0.001).	1 =
Figure (19):	MRI brain images of case (1)	92
Figure (20):	MoCA test of case (1)	94
Figure (21):	MRI brain images of case (2)	95
Figure (22):	MoCA test of case (2)	97

List of Abbreviations

Abb.	Full term
AD	Alzheimer disease
	Apparent diffusion coefficient
	Apolipoprotein E
-	Amyloid β-peptide
	Basal Ganglion
	Cerebral amyloid angiopathy
	Cerebral autosomal dominant arteriopathy with subcortical ischemic strokes and leukoencephalopathy
CARASIL	Cerebral autosomal recessive arteriopathy with subcortical ischemic strokes and leukoencephalopathy
<i>CMBs</i>	Cerebral microbleeds
	Cerebral small vessel disease
CT	Computed tomography
	Deep / periventricular WM
<i>ERPs</i>	Event-related potentials
FLAIR	Fluid-attenuated inversion recovery
	Gradient Echo T2*
HV	hypertensive vasculopathy
	Intracerebral hemorrhage
<i>MARS</i>	Microbleed Anatomical Rating Scale
<i>MCI</i>	Mild cognitive impairment
MELAS	Mitochondrial encephalopathy with lactic acidosis and stroke-like episode
<i>MMSE</i>	Mini Mental State Examination
MoCA test	Montreal Cognitive Assessment tests
<i>MRI</i>	Magnetic Resonance Imaging
<i>PET</i>	positron emission tomography
	Pittsburgh compound B

List of Abbreviations (Cont...)

Abb.	Full term	
SVD	Small vessel disease	
	Susceptibility weighted imaging	
	Transient focal neurological episodes	
<i>TIA</i>	$Transient\ is chemic\ attack$	
<i>VCI</i>	Vascular cognitive impairment	
<i>VaD</i>	Vascular Dementia	
<i>WMLs</i>	White matter lesions	

ABSTRACT

Background: as life expectancy is increasing worldwide, cognitive impairment and dementia are becoming a major public health challenge facing all societies. Accumulating evidence is suggesting that cerebral small vessel disease (cSVD) is a leading cause for cognitive deterioration. Cerebral microbleeds (CMBs) are common in (cSVD) with less consistent results concerning their relation to cognition.

Aim of the Study: determine whether CMBs correlate with cognition in patients with symptomatic small vessel disease (SVD). If cognitive impairment is detected, determine whether this association remained after controlling for other MRI markers of SVD. Also to study the relation between different locations of CMBs and their effect on domains of cognition according to Montreal cognitive assessment (MoCA) test.

Subjects and Methods: this cross sectional study included eighty five Egyptian patients with symptomatic SVD, from the neuropsychiatry clinic of the Main Suez Hospital in Suez city, in the period between February 2017 and February 2018. Subjects were classified according to CMBs presence into CMB positive and negative groups .Both groups are assessed using MRI imaging and MoCA test for cognitive function.

Results: In our study, CMBs recorded a high prevalence rate of SVD patients. Subjects with MBs were mainly males and significantly older, with higher white matter lesion volume and more lacunar infarcts. MoCA test detected significant impairment in in visuospatial/ executive function, attention and total scores in CMB positive group. Both Frontal and Parietal MBs showed independent association with visuospatial/executive impairment. Deep MBs in Basal ganglia was proved to be independent risk factor for attention affection.

Conclusion: Presence and Location of MBs proved to be important in determining cognitive consequences. The relations with cognitive performance were mainly driven by frontal, parietal, and deep located MBs in basal ganglia. Memory affection in frontal MBs was dependent to severe white matter intensities and lacunes.

Keywords: Cerebral Microbleeds – Cognition – Small Vessel Disease

Introduction

mall vessel disease is a term used with various meanings and in different contexts (i.e., pathological, clinical, and neuroimaging aspects). These diseases are thought to be the most frequent pathological neurological processes prevalent brain conditions that have a crucial role in at least three fields: stroke, dementia, and ageing (Ding et al., 2017). Cerebral small vessel disease (cSVD) is described as a predictor of cognitive decline and a major cause of vascular cognitive impairment (VCI) (Lawrence et al., 2015; Pantoni, 2010; Romero et al., 2017).

Unlike large vessels, small vessels cannot be currently visualised in vivo; therefore, the parenchyma lesions that are thought to be caused by these vessel changes have been adopted as a marker of small vessel disease.

Lacunar infarcts and white matter lesions (WMLs) have been recognized for years as characteristic MRI manifestations of SVD. In addition, cerebral microbleeds (CMBs) are recently recognized as an important new manifestation and diagnostic marker of small vessel pathology (Charidimou & Werring, 2011).

WMLs and lacunar infarcts have been well established through studies to be associated with cognitive impairment (Yan et al., 2015). However, CMBs clinical impact on cognition remains an active field of research (Shoamanesh et al., 2018).

CMBs are detected in about 5% of healthy individuals with no neurological disorder with a prevalence increasing with age to reach about 40% in those over 80 years old (Vernooij et al., 2008). CMBs are commonly found in patients cerebrovascular diseases. including ischaemic haemorrhagic stroke, Alzheimer disease (AD) and vascular dementia (VaD) (Cordonnier et al., 2007; Kester et al., 2014).

Most studies were conducted on such groups of patients. They examined the association of CMBs with increased risk of stroke recurrence and intracerebral hemorrhage (Imaizumi et al., 2015), haemorrhagic transformation after ischaemic stroke and impairment of cognitive function (*Hashimoto et al.*, 2004) (Gregoire et al., 2013). Investigation of their presence in relation to poorer microstructural integrity of brain white matter was conducted for explanation of such cognitive impairment (Akoudad et al., 2013).

There is a strong correlation between CMBs presence and the presence of other cerebral SVDs. Subjects with CMBs had significantly higher number of lacunar infarcts and more severe WMLs (Chung et al., 2016). This made the studying of CMBs relation with cognitive performance important in patients with SVD, which may give more explanations for different vascular pathology and mechanisms of cognitive impairment in SVDs.

AIM OF THE STUDY

Determine whether CMBs correlate with cognition in patients with symptomatic SVD. Also studying the relation between different locations of CMBs and their effect on various domains of cognition. Determine whether these associations were independent of coexisting WMLs and lacunar infarcts.