ROLE OF SOME FOOD PRODUCTS AS MUTAGENIC INDUCERS

By

KARIMAN MOHAMED HASSAN MOHAMED

B.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

ROLE OF SOME FOOD PRODUCTS AS MUTAGENIC INDUCERS

By

KARIMAN MOHAMED HASSAN MOHAMED

B.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2005

This thesis for M.Sc degree has been approved by:

Dr.	Hassa	n Hassan	Kha	laf			•••••	•••••	•••
	Prof.	Emeritus	of	Food	Science	and	Technology,	Faculty	of
	Agric	ulture, Moi	ushte	ohr, Be	nha Univ	ersity			
Dr.	Yosry	Ahmed A	.bd	El Daiı	n		•••••	•••••	
	Prof.	of Food So	cien	ce and	Technolo	gy, F	aculty of Agri	iculture, A	4in
	Sham	s Universit	y						
Dr.	Moha	med Fara	g Kl	nallaf			•••••	•••••	
	Prof.	Emeritus	of	Food	Science	and	Technology,	Faculty	of
	Agric	ulture, Ain	Sha	ms Un	iversity				
Dr.	Rama	dan Moha	med	d Mahi	moud		•••••	•••••	
	Prof.	Emeritus	of	Food	Science	and	Technology,	Faculty	of
	Agric	ulture, Ain	Sha	ms Un	iversity				

Data of Examination: 18 / 9 / 2018

ROLE OF SOME FOOD PRODUCTS AS MUTAGENIC INDUCERS

By

KARIMAN MOHAMED HASSAN MOHAMED

B. Sc. Agric. Sci. (Food Technology), Ain Shams University, 2005

Under the supervision of

Dr. Ramadan Mohammed Mahmoud

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. (Principal supervisor)

Dr. Mohamed Farag Khallaf

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Lamyaa Mostafa Kamal Sayed

Associate Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

LIST OF ABBREVIATIONS

° C : Celsius degree

ARC : Agricultural research centre

CRC : Colorectal cancer

COP : Chronic Obstructive PulmonaryCRS : Chinese Restaurant Syndrome

gm : gramHr. : hour

HCAs: Heterocyclic amines

KGDH : ketoglutarate dehydrogenase

MetHb : Methemoglobin

mg : milligram
ml : milliliter

MSG : Monosodium glutamateNDEA : N-nitrosodiethylamineNOC : N-nitroso compounds

NO : Nitric oxide
O.D. : Optical density

PAHs : Polycyclic aromatic hydrocarbons

ppm : part per million

WHO: World Health Organization

ABSTRACT

Kariman Mohamed Hassan Mohamed: Role of Some Food Products as Mutagenic Inducers'. Unpublished M.Sc. Department of Food Science, Faculty of Agriculture, Ain Shams University, 2018.

This study was carried out to detect the mutagenicity of certain food additives (sodium nitrite and monosodium glutamate) and some food products treated with such additives (pastirma, luncheon and chicken cubes). The mutagenicity was evaluated by Ames test using mutated bacteria (Salmonella enterica) which is already mutated and have grown on the minimal glucose medium.

Samples were prepared as extracts and from every sample, 3 concentrations were prepared (0.1-10-100%) and from every concentration, 3 dosages were prepared (1,1.5 and 2ml). Tested samples extract was exposed to mutated bacteria on minimal glucose medium and incubated at 37° C/24 hr. and the bacterial growth was measured by spectrophotometer.

The obtained results showed that:

- Bacterial reverse growth was increased comparing to negative control and the increment was more obvious at 10% concentration higher than that of 0.1 concentration which gave a slight mutagenicity.
- Bacterial reverse growth was increased at 10% concentration of pastirma extract higher than negative control and 0.1% concentration which gave slight reverse growth and mutagenicity.
- Luncheon extract gave a gradually increase of bacterial reverse growth with higher concentration of samples, the high mutagenicity was more obvious at 100% concentration.
- The mutated bacteria exposed to monosodium glutamate extract gave a reverse mutation and growth increment at 0.1% concentration higher than that of other concentrations and that due

to the high concentration of tested sample that can't afforded by bacterial cells.

- Chicken cubes extract showed reverse bacterial growth at different concentrations of the sample higher with 2 fold than negative control at 10% concentration which indicates the high mutagenic effect of the tested sample.

The effect of the food chemical additives is mutagenic even at low concentration that indicates the high mutagenic effect of the tested samples and the dangerous effect of its accumulative effect on human body.

Keywords: Sodium nitrite – Pastirma – Luncheon – Mutagenicity – Chicken cubes – Monosodium glutamate – Ames test.

ACKNOWLEDGMENT

My endless praise is due to **Allah** Almighty for giving me health, strength and success to perform this work.

My great thanks go to my supervisor **Dr. Ramadan Mohamed Mahmoud** Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his help during his supervision of the work.

I owe a deep sense of gratitude to **Dr. Mohamed Farag Khallaf** Prof. of Food Science and Technology , Faculty of Agriculture, Ain Shams University for his continuous encouragement , helps and his suggestions with kindness and his keen interest on all his students .

My great thanks go to **Dr. Lamyaa Mostafa Kamal** for her help during supervision of the work.

I dedicate this thesis to my father spirit who taught me to trust in Allah and believe in hard work. Also, I dedicate my work and success to my great mother and my small family for their support and encouragement.

CONTENTS

1-INTRODUCTION	1
2- REVIEW OF LITERATURE	6
2.1. Meat processing/curing	6
2.1.1. Meat preservation and curing	6
2.1.2 Impact of sodium nitrite curing	8
2.1.3 Effect of sodium nitrite in body	12
2.1.4. Carcinogenic effect of sodium nitrite	15
2.2. Food additives	19
2.2.1. Monosodium glutamate treatment	20
2.2.2. Pathological effect of MSG	21
2.3.Detecting of mutagenicity by Ames Test	25
3. MATERIALS AND METHODS	29
3.1. MATERIALS	29
3.1.1 Tested sample	29
3.1.2 Strain used	30
3.1.2 Media used	30
3.1.3 Preparing samples for treatment:	30
3.1.3.1 Meat samples	31
3.1.3.2. Chicken cubes	31
3.1.3.3. Sodium nitrite salt	31
3.1.3.4 Mono sodium glutamate salt	31
3.1.4. Strains activation	32
3.1.5. Preparing stored bacteria strain for treatment	32
3.2. Analytical Methods	33
3.2.1. Proximate composition	34
3.2.2. Salt determination	34
3.2.3. Ames test	34
3.1. Statistical analysis	34
RESULTS AND DISCUSSION	
4.1. Proximate analysis of meat samples and chicken cubes	35

4.1.1. Proximate analysis of meat samples.	36
4.1.2 Proximate analysis of chicken cubes:	37
4.2. Mutagenic effect of samples extract:	38
4.2.1 Mutagenic effect of different concentrations of sodium	39
nitrite extract:	
4.2.1.1. Sodium nitrite extract (0.1%)	39
4.2.1.2. Sodium nitrite extract (10%):	41
4.2.1.3. Sodium nitrite extract (100%):	41
4.2.1.4. Effect of different concentrations of sodium nitrite	42
extract on the bacterial growth:	
4.2.2 Mutagenic effect of different concentrations of pastirma	43
extract:	
4.2.2.1. Pastirma extract (0.1%):	43
4.2.2.2. Pastirma extract (10%):	44
4.2.2.3. Pastirma extract (100%):	45
4.2.2.4. Effect of different concentrations of luncheon extract	46
on the bacterial growth:	
4.2.3. Mutagenic effect of different concentrations of	48
luncheon extract:	
4.2.3.1. Luncheon extract (0.1%):	48
4.2.3.2. Luncheon extract (10%):	49
4.2.3.3. Luncheon extract (100%):	50
4.2.3.4. Effect of different luncheon extracts on the bacterial	51
growth.	
4.2.4 Mutagenic effect of mono sodium glutamate extract:	52
4.2.4.1. Monosodium glutamate extract (0.1%)	53
4.2.4.2. Monosodium glutamate extract (10%)	54
4.2.4.3. Monosodium glutamate extract (100%)	55
4.2.4.4. Effect of different concentrations of monosodium	56
glutamate extract:	
4.2.5 Mutagenic effect of different concentrations of chicken	58
cubes extract:	

4.2.5.1. Chicken cube extract (0.1%)	58
4.2.5.2. Chicken cube extract (10%)	59
4.2.5.3. Chicken cube extract (100%)	60
4.2.5.4. Effect of different concentrations of chicken cubes on	62
the bacterial growth:	
SUMMARY AND CONCLUSION	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Table No.	I	Page
Table (1)	Proximate chemical composition of investigated meat products.	36
Table (2)	Proximate analysis of chicken cubes.	37
Table (3)	Effect of sodium nitrite extract (0.1%) on the bacterial reverse growth.	38
Table (4)	Effect of sodium nitrite extract (10%) on the bacterial reverse growth.	40
Table (5)	Effect of sodium nitrite extract (100%) on the bacterial reverse growth.	41
Table (6)	Effect of different concentrations of sodium nitrite on the bacterial reverse growth.	42
Table (7)	Effect of pastirma extract (0.1%) on the bacterial reverse growth.	43
Table (8)	Effect of pastirma extract (10%) on the bacterial reverse growth.	45
Table (9)	Effect of pastirma extract (100%) on the bacterial reverse growth.	46
Table (10)	Effect of different pastirma concentrations on the bacterial reverse growth.	47
Table (11)	Effect of luncheon extract (0.1%) on the bacterial reverse growth.	48
Table (12)	Effect of luncheon extract (10%) on the bacterial reverse growth.	50

Table No.		Page
Table (13)	Effect of luncheon extract (100%) on the bacterial reverse growth.	51
Table (14)	Effect of different concentrations of luncheon extract on the bacterial reverse growth.	52
Table (15)	Effect of mono sodium glutamate extract (0.1%) on the bacterial reverse growth.	53
Table (16)	Effect of mono sodium glutamate extract (10%) on the bacterial reverse growth.	54
Table (17)	Effect of mono sodium glutamate extract (100 %) on the bacterial reverse growth.	55
Table (18)	Effect of different concentrations of mono sodium glutamate on the bacterial reverse growth.	56
Table (19)	Effect of chicken cube extract (0.1%) on the bacterial reverse growth.	58
Table (20)	Effect chicken cube extract (10%) on the bacterial reverse growth.	59
Table (21)	Effect of chicken cube extract (100%) on the bacterial reverse growth	60
Table (22)	Effect of chicken cube different concentrations on the bacterial reverse growth.	61

LIST OF FIGURES

Fig. No.		Page
Fig. (1)	Proximate chemical composition of investigated meat products.	36
Fig. (2)	Proximate analysis of chicken cubes.	37
Fig. (3)	Effect of Sodium nitrite extract (0.1 %) on the bacterial reverse growth.	39
Fig. (4)	Effect of sodium nitrite extract (10%) on the bacterial reverse growth.	40
Fig. (5)	Effect of sodium nitrite extract 100% on the bacterial reverse growth.	41
Fig. (6)	Effect of different concentrations of sodium nitrite on the bacterial reverse growth.	42
Fig. (7)	Effect of pastirma extract (0.1%) on the bacterial reverse growth.	44
Fig. (8)	Effect of pastirma (10%) extract on the bacterial revere growth.	45
Fig. (9)	Effect of pastirma extract (100%) on the bacterial reverse growth.	46
Fig.(10)	Effect of different pastirma concentrations on the bacterial reverse growth.	47
Fig. (11)	Effect of luncheon extract (0.1%) on the bacterial reverse growth.	49
Fig. (12)	Effect of luncheon extract (10%) on the bacterial reverse growth.	50

Fig. No.		Page
Fig.(13)	Effect of luncheon extract (100%) on the bacterial reverse growth.	51
Fig. (14)	Effect of different concentrations of luncheon extract on the bacterial reverse growth.	52
Fig.(15)	Effect of mono sodium glutamate extract (0.1%) on the bacterial reverse growth.	53
Fig. (16)	Effect of mono sodium glutamate extract (10 %) on the bacterial reverse growth.	54
Fig. (17)	Effect of mono sodium glutamate extract (100 %) on the bacterial reverse growth.	55
Fig. (18)	Effect of different concentrations of mono sodium glutamate on the bacterial reverse growth.	57
Fig. (19)	Effect of chicken cube extract (0.1%) on the bacterial reverse growth.	58
Fig. (20)	Effect of chicken cube extract (10%) on the bacterial reverse growth.	59
Fig. (21)	Effect of chicken cube extract (100%) on the bacterial reverse growth	60
Fig. (22)	Effect of chicken cube different concentrations on the bacterial reverse growth.	61

INTRODUCTION

Food preservation was critical to human survival and human knew it thousand centuries ago, sun drying was the first method human used for preserving food before using salting and dry curing to protect food and meat from spoilage specially in hot climate. The word cure stems from the Latin word curare that means " to take care of " and it refers to healing, restoring health and to correct something detrimental.

Food can be classified as fast food, junk food, whole food and organic food, out of these whole food is unprocessed, unrefined, so it has very short shelf life.

Nowadays, mostly all food products have food preservatives. The purpose is generally to preserve the natural characteristics of food, to increase the shelf life, and to inhibit natural ageing and discoloration that can occur during food preparation such as the enzymatic browning reaction in apples after they are cut. Natural methods of preservation usually aim to exclude air, moisture and microorganisms. Natural way of food preservation can be done by boiling, freezing, pasteurizing, dehydrating, smoking and pickling, for example coffee powder and soup are dehydrated, dried for preserving. Artificial ways of food preservation can be done by irradiation, vacuum packing and hypobaric packing. Now, certain synthetic chemicals are used as food preservatives. They are most effective for a longer shelf life and stop or delay the growth of bacteria, suppress the reaction when food comes in contact with oxygen or heat, prevent the loss of some essential amino-acids and some vitamins and enhance the food flavors and colors (Sharma, 2015).

Rapid lifestyle transformation, particularly among those living in urban areas, has resulted into a dramatic increase in the demand for processed food, packaged and ready-to-eat food products. (**Atri et al. 2013**).