Recent Modalities in Surgical Management of Colon Cancer

An essay

Submitted For the partial fulfillment of master degree in General Surgery

By

Ayman Rabie Hassan Ibrahim Etman

M.B.B.Ch. Faculty of Medicine-Ain Shams University

Under supervision of

Prof. Dr. Ashraf EL-Zougby

Professor of General Surgery Faculty of Medicine-Ain Shams University

Dr. Mohamed Aboul-Naga

Lecturer of General Surgery Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Ashraf EL-Zougby,** Professor of General Surgery, Faculty of Medicine-Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Mohamed Aboul-Naga**, Lecturer of General Surgery, Faculty of Medicine-Ain Shams University, for his continuous directions and support throughout the whole work.

Words fail to express my love, respect and appreciation to my wife for her unlimited help and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ayman Rabie Hassan Ibrahim Etman

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the work	5
Review of literatures	6
Chapter 1:	
Anatomy	6
Chapter 2:	
Risk factors for colon cancer	15
Chapter 3:	
Pathology	20
Chapter 4:	
Diagnosis of Colon Cancer	30
Chapter 5:	
Surgical management of colon cancer	45
English summary	128
References	132
Arabic summary	

List of Abbreviations

AAA : Abdominal aortic aneurysms

AP-1 : Protein activator 1

CLS : Conventional laparoscopic surgery

CME : Complete mesocolic excision

COX-2 : Cyclooxygenase 2 CRP : C-reactive protein

CRS : Cytoreductive surgeryCT : Computed tomography

CVL : Central vascular ligation

DCBE : Double contrast barium enema

DNA : Deoxyribonucleic acid

EGFR : Epidermal growth Factor

ERAS : Enhanced recovery after surgeryFAP : Familial adenomatous polyposis

HALS : Hand-assisted laparoscopic surgery

HIPEC : Hyperthermic intraperitoneal chemo-therapyHNPCC : Hereditary non-polyposis colorectal cancer

ICG : Indocyanine green

IMA : Inferior Mesenteric Artery

JPS : Juvenile polyposis syndrome

LLQ : Left lower quadrant

LMWH : Low Molecular Weight heparin

MCL : Mid-clavicular line

MRI : Magnetic resonance imaging

NIRF : Near-infrared fluorescence camera system

NOSE : Natural orifice specimen extraction

PET : Positron Emission Tomography

List of Abbreviations (Cont.)

PJS : Peutz-Jeghers syndrome

POSSUM : Physical and Operative Severity Score for the

Mortality and Morbidity

RBC : Red-blood-cell

RLQ : Right lower quadrant RUQ : Right upper quadrant

SEMS : Self-expandable metal stentsSFM : Splenic flexure mobilization

SILC : Single incision laparoscopic colectomySILS : Single Incision Laparoscopic Surgery

SMA : Superior Mesenteric ArterySMV : Superior Mesenteric Vein

SUL : Spinoumbilical line

TME : Total mesorectal excision

WCC : White cell count

List of Tables

Table	Title	Page
1	The histological characteristics, size, and	25
	degree of dysplasia	
2	Haggitt's classification for colorectal	26
	carcinomas arising in adenomas	
3	Depth of Invasion malignant sessile polyps	27
4	Summary for investigations for colon cancer	36
5	Stage grouping of colon cancer	43
6	Tumor Regression Grade	44
7	Comparison of HALS, open and laparoscopic	91
	procedure	
8	Advantages and disadvantages of hand-	95
	assisted laparoscopic surgery	
9	Classification and types of single port devices	97
10	Risk factors for Anastomotic Leak:	125

List of Figures

Fig.	Title	Page
1	Anatomy of the Colon.	6
2	Blood Supply of colon.	9
3	Blood supply of left colon.	13
4	Gross appearance of colorectal carcinoma.	20
5	Microscopic feature of adenocarcinoma in	22
	colon.	
6	Pedunculated adenomatous polyp, microscopic	22
	appearance.	
7	Sessile adenomatous polyp, microscopic	23
	appearance.	
8	Villous adenoma.	24
9	Haggitt's classification for colorectal	26
	carcinomas arising in adenomas.	
10	Mollecular mechanism.	28
11	Technetium tagged RBCs.	34
12	Tattoo localization of a sigmoid colon cancer.	48
13	Types of colorectal resections.	53
14	Right colectomy.	54
15	Extended Right Colectomy.	55
16	Types of anastomosis	59
17	Linear stapler for a side-to-side stapled	62
	anastomosis.	
18	Closing anastomosis.	62
19	Position of laparoscopic instruments for right	68
	hemicolectomy.	
20	Mobilization of cecum.	70
21	Mobilization of hepatic flexure.	72
22	Intracorporeal division of vasculature of right	73
	colon.	
23	Exteriorization of right colon.	74
24	Alternative technique for right	
	hemicolectomy—medial to lateral dissection76	

Fig.	Title	Page
25	Position of laparoscopic ports for left	77
	hemicolectomy.	
26	Mobilization of left colon.	78
27	Mobilization of splenic flexure.	79
28	Position of laparoscopic ports for sigmoid	80
	colectomy and anterior resection.	
29	Mobilization of upper rectum.	82
30	Intracorporeal vascular division of superior	83
	hemorrhoidal and sigmoidal vessels.	
31	Division of upper rectum with linear stapler.	83
32	Introduction of instruments.	88
33	Trocar placement for hand-assisted	89
	laparoscopic total colectomy.	
34	Exteriorization of colon via the hand port.	90
35	GelPort.	93
36	HALS with Omni port.	94
37	The LapDisc .	94
38	Various single-port devices.	98
39	Difficulties with minimally invasive single-site	99
	surgery concept.	
40	Difficulties with minimally invasive single-site	100
	surgery concept.	
41	The Radius Surgical System® – Technical	101
	details.	
42	Incision and Anastomosis between the Walls	103
	of Each Colon Were Performed by the	
10	Endoscopic Linear Cutter-Straight.	101
43	A V-Shaped Anastomosis was made on the	104
4.4	Wall.	104
44	The remanent openings was reclosed by an	104
4.7	endoscopic linear cutter-straight.	104
45	Laparoscopic view of the completed	104
	anastomosis.	

Fig.	Title	Page
46	Transvaginal Extraction of Specimens was	105
	accomplished through a Wound Protector.	
47	Robotic instruments and hand controls.	106
48	Room setup and position of surgeon and	107
	assistant for robotic surgery.	
49	Showing positioning of patient.	111
50	Showing marking for Right Colonic resections	112
51	Showing post placements for left sided	113
	colorectal operations.	
52	Showing port placements for left sided	114
	colorectal operations.	
53	ICG perfusion angiography.	118
54	Port configuration on the single incision	120
	fascial device.	

Introduction

Colon cancer is the third most common type of cancer worldwide and a leading cause of cancer death. It is estimated that over 73, 000 men and 70, 000 women will be diagnosed with colon cancer annually, and that nearly 52, 000 people died of colon cancer in 2012. Unfortunately, up to 50% of colon cancer patients will be diagnosed with hepatic metastases at any time in their disease course, and between 15% and 25% have liver metastases at the time of diagnosis (McKeown et al., 2014).

Colon cancer results from the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic epithelium to colon adenocarcinoma (Elrasheid et al., 2013).

Clinical manifestations of Colon cancer depend on the location of the lesion. Both right and left colon lesions occasionally cause hematochezia, but more often bleeding is occult, causing anemia and fatigue. Up to 30% of patients with colonic carcinoma are primarily diagnosed in an acute stage with sub/obstructing symptoms (Kolfschoten et al., 2012).

Appropriate diagnosis and staging are crucial to ensure a correct treatment strategy. In the last 10 years the mortality rate of Colon cancer has decreased by more than 20% due to the rising developments in diagnostic techniques and optimization of surgical, adjuvant and also palliative therapies (**Kekelidze et al., 2013**).

The most used modalities for staging of Colon cancer chest/abdomen/pelvis CT and magnetic resonance imaging (MRI). Also a complete colonoscopy up to the coupled with biopsy for histopathological cecum. examination, is considered the gold standard to diagnose colonic lesions, in view of its high diagnostic performance. This procedure allows the tumor localization and possibly the endoscopic polyps, simultaneously excision of SO representing a diagnostic and a therapeutic opportunity (Barret et al., 2013).

Colonic cancer are classified according to the TNM system, local invasion depth (T stage), lymph node involvement (N stage) and presence of distant metastases (M stage). These stages are combined into an overall stage definition, which provides the basis for therapeutic decisions (Edge et al., 2010).

Colon cancer management continues to evolve with significant advances in chemotherapy, surgical technique and palliative interventions. These advances may be attributed to a better understanding of the disease genetics, improved surveillance and technical advances in the operations, increasing indications for the use neo adjuvant and adjuvant chemotherapy, and better palliation (**Chokshi et al., 2009**).

Primary colon cancers without systemic disease are treated mainly by surgery with complete mesocolic excision (CME) with arteries and veins ligated as close as possible to the main vascular trunk to have lower local recurrence rate and improved survival. Colonic segmental resection is

performed according to the site of the tumor; right hemicolectomy transverse colectomy, left hemicolectomy or total colectomy are the most common surgical procedures and it is always indicated in absence of metastases (Sehgal et al., 2014).

In the emergency setting, when presenting symptoms of obstruction, perforation and bleeding, segmental colectomy for resection of the tumour, with or without fecal diversion is indicated. In presence of unresectable metastatic lesions or as initially palliation of obstructing Colonic cancer, the use of self-expandable metal stents (SEMS) is gaining wide acceptance, also to allow a quick start of neo adjuvant chemotherapy or chemo-radiation. The colonic stent insertion effectively decompresses the obstructed colon and surgery can be performed electively at a later stage (Fuccio et al., 2014).

Conventional laparoscopic surgery (CLS) with CME, is today considered a safe technique and spread all over the world, single-incision laparoscopic surgery (SILS) appears to offer cosmetic advantages over CLS, with no compromise of surgical morbidity, oncological appropriateness or increased cost (Yang et al., 2013).

Laparoscopic and robotic surgery for colon surgery have the same advantages in terms of faster recovery, but robotic-assisted colectomy significantly increases the costs of care without providing clear reductions in overall morbidity or length of stay, so a critical appraisal of the benefits offered

Introduction and Aim of The Work

in comparison with the resources consumed is undergoing (Baek et al., 2013).

As operative and non-operative therapies have evolved and improved, the management of colon cancer has become multidisciplinary and more complex, particularly in the face of advanced disease. The role of surgery in the management of advanced colon cancer continues to evolve as the efficacy of chemotherapy in decreasing tumor burden increases, thereby increasing the susceptibility of the tumor to resection. Despite these gains, the overall impact of combination regimens in metastatic therapy has been relatively modest with improved two-year survivals and no substantive gains in five-year survivals (Kanthan et al., 2012).

Aim of the work

To review the recent modalities in surgical management of multi focal colon cancer.

Chapter One Anatomy

Anatomy of the colon:

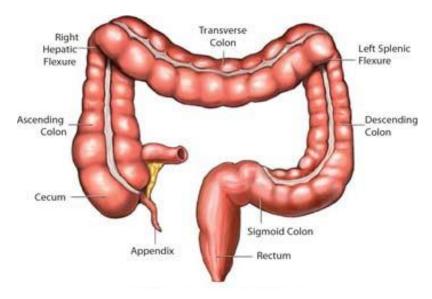


Fig (1): Anatomy of the Colon (Beck et al., 2011)

Ascending Colon:

The ascending colon is approximately 15 cm long. It ascends, from the level of the ileocecal junction to the right colic or hepatic flexure. It lies lateral to the psoas muscle and anterior to the iliacus, the quadratus lumborum, and the lower pole of the right kidney. The ascending colon is covered with peritoneum anteriorly and on both sides. In addition, fragile adhesions between the right abdominal wall and its anterior aspect, known as Jackson's membrane, may be present. The posterior surface of ascending colon is not covered with peritoneum, which is instead replaced by an areolar tissue (fascia of Toldt). In the lateral peritoneal