

Impact of CMV Viremia on Allogeneic Peripheral Blood Stem Cell Transplantation in Patients with Acute Leukemia

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Hematology

By

Gehad Adel Mohammed Hasan M.B.B.Ch.

Under Supervision of

Prof. Dr. Mohammed Osman Azazzi

Professor of Clinical Hematology and Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Raafat Abdelfattah Soliman

Consultant of Hematology and Clinical Oncology, NCI Faculty of Medicine - Cairo University

Dr. Mary Gamal Naguib Maleek

Lecturer of Internal Medicine- Clinical Haematology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohammed Osman**Azazzi, Professor of Clinical Hematology and Internal Medicine, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Raufat**Abdelfattah Soliman, Consultant of Hematology

and Clinical Oncology, NCI Faculty of Medicine
Cairo Univirsity, for his sincere efforts, fruitful

encouragement.

I am deeply thankful to **Dr. Mary Gamal**Maguib Maleek, Lecturer of Internal Medicine
Clinical Haematology, Faculty of Medicine, Ain

Shams University, for her great help, outstanding support, active participation and guidance.

Gehad Adel Mohammed Hasan

To:

My parents

for their endless love, support, and continuous care

> My Husband & My Family

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	9
Introduction	1 -
Aim of the Work	5
Review of Literature	
Acute Leukemia	6
Allogeneic Hematopoietic Stem Cell Transplan	tation 71
• Cytomegalovirus in Hematopoietic Stem Cell T Recipients	-
Patients and Methods	124
Results	138
Discussion	152
Summary and Conclusion	157
References	158
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Fab classification of AML	11
Table (2):	WHO classification of AML and neoplasms	
Table (3):	Prognostic-risk group based on cyt and molecular profile	
Table (4):	WHO classification of acute lymph leukemia	
Table (5):	Common indications for allo-HSCT.	73
Table (6):	Definition of acute and chronic GVF	HD78
Table (7):	Acute GVHD clinical staging	81
Table (8):	Glucksberg grading system	82
Table (9):	Agents used for steroid-refractor GVHD	•
Table (10):	Classification of chronic GVHD	86
Table (11):	Organisms causing infections after	HSCT88
Table (12):	Factors associated with graft failure	e91
Table (13):	WHO scale for oral mucositis	94
Table (14):	Risk Factors for sinusoidal liver inju	ury97
Table (15):	Treatment of SOS	98
Table (16):	Risk factors of secondary cancers at HSCT	
Table (17):	Guidelines for CMV management Prevention of CMV disease in all SCT. ECIL recommendations	logeneic-
Table (18):	Demographic data distribution of the	

Tist of Tables cont...

Table No.	Title	Page No.
Table (19):	Disease status at time of transplan	ıt:139
Table (20):	Ph chromosome status at transplant:	
Table (21):	Conditioning regimen used:	141
Table (22):	Disease status at time of transplan	ıt:142
Table (23):	Conditioning regimen used:	143
Table (24):	20 patients had aGVHD	144
Table (25):	25 patients had cGVHD	144
Table (26):	Showing the relation between C AGVHD:	
Table (27):	Showing the relation between C chronic GVHD:	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	HSCs self-renewal and differentiatio	n71
Figure (2):	Chronology of HSCT complications	77
Figure (3):	Three phases of aGVHD pathophysiol	ogy79
Figure (4):	Gender distribution.	138
Figure (5):	Disease status at time of transplant.	139
Figure (6):	Ph chromosome status at tim transplant	
Figure (7):	Disease status at time of transplant.	142
Figure (8):	Conditioning regimen used	143
Figure (9):	Kaplan-Meier showing overall survithe study group 68%	
Figure (10):	Kaplan-Meier showing overall suraccording to CMV	
Figure (11):	Kaplan-Meier showing event free sur of the study group which is 60.8	
Figure (12):	Kaplan-Meier showing disease survival of the study group 64.8	
Figure (13):	Kaplan-Meier showing overall survi CMV – ve VS CMV + ve and AGVHD	

Tist of Abbreviations

Abb.	Full term
6-MP	6 moreantonurino
	. 6 mercapioparme . Antibody-dependent cell-mediated
ADCC	cytotoxicity
AI.I.	. Acute lymphoblastic leukemia
	. Acute myeloid leukemia
	. Antigen Presenting Cells
	. Acute promyelocytic leukemia
	. Anti Thymocyte Globulin
	. Adolescent and young adults
	. Bronco alveolar lavage
BM	
	. Chimeric Antigen Receptors-T
<i>CB</i>	
	. Core binding factor
<i>CMV</i>	. cytomegalovirus
<i>CN</i>	. Cytogenetic Normal
CNIs	. Calcineurin inhibitors
<i>CR</i>	. Complete remission
CRS	. Cytokine release syndrome
<i>CSF</i>	. Cerebrospinal Fluid
	. Cytotoxic T-lymphocytes
	. Diffuse alveolar haemorrhage
	. Donor Lymphocyte Infusion
	. Dose Limiting toxicity
<i>EBV</i>	•
	. Half maximal effective concentration
	. Event Free Survival
	. Engraftment Syndrome
	. French-American-British

Tist of Abbreviations cont...

Abb.	Full term
FEV1	Forced Expiratory Volume in 1second
	Folate Receptor family β
•	Gastric antral vascular ectasia
	Granulocyte colony-stimulating factor
<i>GF</i>	
	. Graft-versus-Host Disease
	. Graft-versus-Tumor
	. Hemorrhagic cystitis
HCC	. Hepatocellular Carcinoma
HLA	. Human leukocyte antigen
HSCT	Hematopoietic stem cell transplantation
HSV	. Herpes simplex virus
ITD	Internal Tandem Duplication
<i>MMAF</i>	Microtubule-disrupting agent monomethyl auristatin F
<i>MMF</i>	. Mycophenolate mofetil
<i>MRD</i>	. Minimal Residual disease
NCCN	National Comprehensive Cancer Network
<i>NHL</i>	Non-Hodgkin lymphoma
NK	Natural killer
OS	Overall survival
<i>PBD</i>	. Pyrrolobenzodiazepine
<i>PBSC</i>	Peripheral blood stem cells
<i>PCR</i>	Polymerase chain reaction
PGFR	Platelet derived growth factor
PI3K	Phosphoinositide 3-kinase
PLTD	Post-transplant lymphoproliferative disorders
<i>RAF</i>	Rapidly Accelerated Fibrosarcoma

Tist of Abbreviations cont...

Abb.	Full term
<i>RCTs</i>	Randomized controlled studies
<i>RFS</i>	Relapse Free survival
<i>RIC</i>	Reduced intensity conditioning
SOS	sinusoidal obstructive syndrome
SWOG	Southwest Oncology Group
TBI	Total body irradiation
<i>TCD</i>	$\dots T$ -cell depletion
<i>TK</i>	Tyrosine kinase
<i>TMA</i>	Thrombotic microangiopathy
TMP/SMX	$\ Trime tho prim-sulfame tho xazol$
TNF	Tumor necrosis factor
TRM	Treatment related mortality
<i>TSH</i>	Thyroid-stimulating hormone
VGFR	Vascular endothelial growth factor
VOD	Veno-occlusive disease
<i>VSLI</i>	Vincristine sulfate liposomes injection

Introduction

ematopoietic stem cell transplantation (HSCT) is now established as a standard therapeutic modality for a variety of malignant and non-malignant diseases. The first successful allogeneic HSCT was done with bone marrow (BM) as the source of hematopoietic stem cells in 1968.

Nowadays transplant physicians are faced with 3 viable choices of stem cells for allogeneic HSCT, namely BM, PBSC and CB and clinicians have to face the challenges of selecting the optimal stem cell source. Although all 3 sources of stem cells are capable of reconstituting the hematopoietic system in recipient after transplant, they have many inherent differences in cellular constituents and biological and immunological properties (*Cheuk et al.*, 2013).

G-CSF-mobilized PBSC are increasingly used instead of BM cells for allogeneic transplantation because they provide faster engraftment and better survival in recipients with poorrisk disease (*Group SCTC*, 2005).

Important difference among the sources of stem cell is the amount of mature T cells present. PBSC usually contains a lot more mature T cells compared to BM, which in turn contains more T cells compared to CB, and this partly explains the differences in the risk of graft rejection and graft-versushost disease (GVHD). Depletion of T cells is associated with increased risk of graft rejection and disease relapse, but lower risk of GVHD (Switzer et al., 2014).

One of the main reasons for preferring PSC worldwide is the important advantages provided by this method to the donor. These advantages are avoidance of anesthesia, lack of the need for hospitalization or blood transfusion, and very low serious adverse event risk (*Sirinoglu-Demiriz et al.*, 2012).

Most of the randomized controlled trials (RCTs) comparing **PBSC** matched related donor BMand transplantation for patients with hematological malignancies found no significant differences between the two stem cell source in important outcomes including overall survival, disease-free survival, transplant-related mortality, relapse, acute GVHD and chronic GVHD. However, all trials showed significantly faster neutrophil engraftment in PBSC transplants, and all but one trial showed significantly faster platelet engraftment in PBSC transplants, which may result in earlier hospital discharge for PBSC recipients and lower cost for PBSC transplantation. Lymphocyte recovery was also found to be better in the PBSC group in one trial (*Powles et al.*, 2000).

Despite progress in immunosuppressive and antiviral therapy, acute graft-versus-host disease (aGVHD) and cytomegalovirus (CMV) infection remain important complications after allogeneic stem cell transplantation (allo-SCT) (*Boeckh et al.*, 2009).

Multiple studies have shown a pathogenic association between CMV replication and aGVHD. GVHD and its treatment put patients at risk for CMV replication. On the other hand, CMV may also play a role in the development of GVHD. CMV-infected endothelial cells have been shown to produce inflammatory cytokines such as interleukin 6. These inflammatory responses in patients after allo-SCT with CMV replication could thereby contribute to the initiation of aGVHD (*Larsson et al., 2004; Cantoni et al., 2010*).

The most common clinical manifestations of CMV disease in allo-SCT recipients are pneumonitis, hepatitis and gastroenteritis. The introduction of prophylactic or preemptive antiviral drug treatment during this early post transplantation period resulted in a marked reduction of the incidence of CMV pneumonia (*Ljungman*, 2008).

The most important risk factors for CMV disease after allogeneic SCT are the serologic status of the donor and recipient. CMV-seronegative patients receiving stem cells from a CMV-seronegative donor (D-/R-) have a very low risk of primary infection if CMV safe blood products are used. Other risk factors for CMV infection include the use of high-dose corticosteroids, T-cell depletion, acute and chronic GVHD, the use of antithymocyte globulin, conditioning regimens containing fludarabine, high CMV viral load, and the use of mismatched or unrelated donors (Walker et al., 2007; Mori and Kato, 2010).

Introduction

The serologic determination of CMV-specific antibodies (IgG and IgM) is important for determining a patient's risk for CMV infection after transplantation but cannot be used for the diagnosis of CMV infection or disease. Polymerase chain reaction (PCR) is the most sensitive method for detecting CMV. Quantitative PCR (qPCR) relies on the amplification and quantitative measurement of CMV DNA, while at the same time maintaining high specificity. High levels of DNA in blood is a good predictor of CMV disease in HSCT recipients (*Boeckh et al.*, 2003).