Clinical Outcome of IV Thrombolysis in Lacunar Stroke

Thesis

Submitted for Partial Fulfillment of Master's Degree in Neurology and Psychiatry

By

Sara Mohamed Kamal Mohamed El Bukhari M.B.B.Ch.

Supervised By

Prof. Dr. Hany Mahmoud Zaki El Dine

Professor of Neurology
Faculty of Medicine - Ain Shams University

Prof. Dr. Eman Mahmoud Awad

Professor of Neurology
Faculty of Medicine - Ain Shams University

Dr. Tamer Mahmoud El Sayed Roushdy

Lecturer of Neurology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University **2018**

سورة البقرة الآية: ٣٢

First of all, thanks to "Allah" who gave me the power to accomplish this work.

I would like to express my deepest gratitude to my honored **Prof. Dr. Hany Mahmoud Zaki El Dine** professor of neurology faculty of medicine, Ain-Shams University, for his kind supervision, cooperation, wise instruction, help throughout this study, expert touches and encouragement. I feel greatly honored to have worked under his supervision.

I would like to present my thanks and appreciation to **Prof. Dr. Eman Mahmoud Awad,** professor of neurology faculty of Medicine, Ain-Shams university for her dedication and keen interest on me at every stage of my research, her valuable and timely advice with kindness and enthusiasm throughout this work.

I would like to extend my thanks and appreciation to **Dr. Tamer Mahmoud El Sayed Roushdy** Lecturer of neurology, Ain-Shams University, who spared no time and effort to provide me with his valuable instructions, he was supporting me whenever I ran into a trouble spot or had a question about my research or writing..

Last but not least, nobody has been more important to me in the pursuit of this project than the members of my family. I would like to thank my parents for their love and support. I would like to specially thank my beautiful little sister for her help and high spirit throughout the difficult times. Most importantly, I wish to thank my loving and supportive husband, for without him this work could have never been finished.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	7
List of Abbreviations	iv
Introduction	i
Aim Of The Work	4
Review of Literature	
• Chapter (1): Stroke	5
• Chapter (2): Management Of Acute Ischemic Stroke	e 20
Patients And Methods	44
Results	52
Discussion	79
Conclusion	86
Limitations	87
Recommendations	88
Summary	89
References	92
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	TOAST classification for small vessel disease:	10
Table (2):	SSS – TOAST classification	11
Table (3):	AHA, ASA 2018 recommendations	34
Table (4):	Demographic data of studied patients	53
Table (5):	Risk factors of studied patients	54
Table (6):	Comparison between group 1 and group 2 age, and hospital admitted from	_
Table (7):	Comparison between group 1 & group 2 regrisk factors	,
Table (8):	Distribution of the studied patients regarding or door, onset to needle and BP on admission	
Table (9):	RBS on admission & MRI findings of studied p	patients 63
Table (10):	Comparison between group 1 & group 2 reg severity on admission using NIHSS and mRS se	
Table (11):	Comparison between group 1 & group 2 regincidence of hemorrhagic transformation,	brain
	oedema and outcome upon discharge	
Table (12):	Comparison between group 1 & group 2 reg severity of symptoms upon discharge using 1 and mRS scores	NIHSS
Table (13):	Comparison between group 1 & group 2 regard	rding 3
	months prognosis	69

List of Cables

Table No	o. Title	Page	No.
Table (14):	Comparison between group 1 & group 2 reg	arding	
	severity of symptoms after 3 months using 1	NIHSS	
	and MRS scores		71
Table (15):	Comparison between severity of symptoms in g	roup 1	
	using NIHSS and mRS scores at different	t time	
	intervals.		73
Table (16):	Comparison between severity of symptoms in g	roup 2	
	using NIHSS and mRS scores at different	t time	
	intervals		75
Table (17):	Comparison between group 1 & group 2 reg	arding	
	mean difference of NIHSS and mRS sco	res at	
	different time intervals.		77

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathophysiology of stroke	7
Figure (2):	Neuroimaging in acute lacunar stroke	17
Figure (3):	Patterns of acute lacunar stroke on diffusion-we MRI.	_
Figure (4):	The distribution of the patients in the study acc to gender	_
Figure (5):	Comparison between group 1 & group 2 regage	
Figure (6):	Comparison between group 1 & group 2 reggender	
Figure (7):	Comparison between group 1 & group 2 reg hospital admitted from	
Figure (8):	Comparison between group 1 & group 2 reg smoking	
Figure (9):	Comparison between group 1 & group 2 reg	
Figure (10):	Distribution of the studied patients regarding o door	
Figure (11):	Distribution of the studied patients regarding oneedle	
Figure (12):	Distribution of the studied patients regarding admission	
Figure (13):	Comparison between group 1 & group 2 reg severity on admission using NIHSS and mRS se	
Figure (14):	Comparison between group 1 & group 2 regincidence of hemorrhagic transformation	
Figure (15):	Comparison between group 1 & group 2 regincidence of brain oedema	•

List of Figures

Fig. No.	Title	Page	No.
Figure (16):	Comparison between group 1 & group 2 reg global outcome on discharge		67
Figure (17):	Comparison between group 1 & group 2 reg severity of symptoms upon discharge using N and mRS scores	NIHSS	68
Figure (18):	Comparison between group 1 & group 2 regard months prognosis		70
Figure (19):	Comparison between group 1 & group 2 reg severity of symptoms after 3 months using NIHS		71
Figure (20):	Comparison between group 1 & group 2 reg severity of symptoms after 3 months using mRS	_	72
Figure (21):	Comparison between severity of symptoms in g using NIHSS scores at different time intervals		73
Figure (22):	Comparison between severity of symptoms in g using mRS scores at different time intervals		74
Figure (23):	Comparison between severity of symptoms in g using mRS scores at different time intervals		75
Figure (24):	Comparison between severity of symptoms in g using NIHSS scores at different time intervals	-	76
Figure (25):	Comparison between group 1 & group 2 reg mean difference of mRS scores at different intervals.	time	77
Figure (26):	Comparison between group 1 & group 2 reg mean difference of NIHSS scores at differen intervals.	t time	78

List of Abbreviations

Abb. Meaning

American heart association
Acute ischemic stroke
Amino-3-hydroxy -5-methyl-4-isoxazole propionic
American stroke association
Atheroscelerosis, small vessel disease, cardiac pathology, other causes, dissection
Blood pressure
Causative classification system
Chinese ischemic stroke subclassification
Cerebral microbleeds
Central nervous system
Comprehensive stroke center
Cerebrospinal fluid
Computed tomography
Ct-angiography
CT-perfusion imaging
Double stranded nucleic acid
Door to needle
Diffusion weighted imaging

List of Abbreviations

Abb. Meaning

ECASS	European cooperative acute stroke study
ED	Emergency department
EMS	Emergency medical service
EPVS	Enlarged perivascular spaces
FDA	Food and drug administration
FLARE	Fluide attenuated inversion recovery
GWAS	Genome wide assosiacion studies
IVT	Intravenous thrombolysis
LAA	Large artery atheroscelerosis
LacS	Lacunar stroke
LOE	Level of evidence
LVO	Large vessel occlusion
MCA	Middle cerebral artery
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRS	Modified ranking scale
MSUs	Mobile stroke units
NCCT	Non contrast ct

List of Abbreviations

Abb.	Meaning
NIHSS	National institute health stroke scale
NINDS	National institute of neurological disorders and stroke
NMDA	N-methyl-D- aspartate
OAC	Oral anticoagulants
OTD	Onset to door
OTN	Onset to needle
PSC	Primary stroke center
RCT	Randomized control trial
rtPA	Recombinant tissue plasminogen activator
SVD	Small vessel disease
TOAST	Trial of Org in acute stroke treatment
WMC	White matter changes

Abstract:

Introduction: Lacunar infarcts are small subcortical infarcts mainly located in the basal ganglia, internal capsule, thalamus, corona radiata and brainstem. About 20% of all strokes (about 25% of all ischemic stroke) are lacunar in type. Lacunar infarcts are considered to be caused by progressive lipohyalinosis and atherosclerosis of deep penetrating arteries. This study was designed to study the outcome in patients with lacunar stroke that received intravenous thrombolysis with recombinant tissue plasminogen activator to determine efficacy of IV thrombolysis in lacunar stroke.

Patients and Methods: 58 patients were included in the study who received IV thrombolysis. All were in-patients, admitted in the stroke unit either in Ain Shams University hospitals, mean age of patients (62.4 ± 9.4). Patients were diagnosed by neurological history, clinical examination and radiological investigations (CT scan and MRI brain stroke protocol). All patients underwent stroke severity assessment using National Institutes of Health Stroke Scale (NIHSS) score and stroke disability assessment using modified Rankin Scale (mRS) score on admission, on discharge and after 3 months.

Results: Mean and Standard Deviation of both studied groups regarding age, gender, risk factors, NIHSS, MRS (N=58). Mean age (62.4 \pm 9.4), 72.4% males, 27.6% females, 20.7% smokers, 41.4% DM, 44.8% HTN, 10.3 % had previous stroke and 12.1% hyperlipidemic. NIHSS on admission (6.9 \pm 2.1). Regarding site of infarction in MRI 55% were capsular, 8.6 % thalamic, 36.2 % pontine and 0% cerebellar size of infarct on MRI(8.6 \pm 2.8),3.4 % of patient complicated with hemorrhagic transformation, 3.4 % with brain oedema, mostly in the capsular division. 82.8 % improved significantly on discharge, 10.3 % unchanged, 3.4% worse prognosis, 3.4 % dead, NIHSS on discharge (3.9 \pm 1.3) , MRS (1.6 \pm 0.5). After 3 months 74.1% was unchanged regarding NIHSS and MRS, NIHSS after 3 month (3.09 \pm 4.1), MRS after 3 month (0.9 \pm 1.8).

Conclusion: There is high association between lacunar stroke and risk factors (DM, HTN). Internal capsule infarct is the most common site of lacunar stroke.

Key Words: Lacunar stroke, Stroke, Thrombolytic therapy, Magnetic resonance imaging

INTRODUCTION

Statistics, 2013). Statistics, 2013). Statistics, 2013). Signature of 6.4% of all deaths and thus ranks 3rd after heart disease and gastrointestinal (especially liver) diseases, and followed closely by cancer (6.1%). Deaths attributable to stroke have remained relatively unchanged during the past 10 years (Annual Bulletin of Mortality Statistics, 2013).

Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator (rtPA) is a well-established treatment in acute ischemic stroke (*Wardlaw et al., 2012*). Little is known, however, about the relative efficacy of IVT in the different subtypes of stroke.

The effectiveness and safety of thrombolysis with intravenous recombinant human tissue plasminogen activator (rtPA) for ischemic stroke have been clearly demonstrated within 4.5 hrs. of symptom onset (Sandercock et al., 2012).

Tissue-type plasminogen activator (tPA) is a serine protease well known to promote fibrinolysis. This is why: its recombinant form (rtPA) can be used, either alone or combined with thrombectomy, to promote recanalization/reperfusion following ischemic stroke (*Vivien*, 2017).

Lacunar infarcts are small subcortical infarcts mainly located in the basal ganglia, internal capsule, thalamus, corona

radiata and brainstem. On CT scans they appear as small hypodense areas. On MRI they are defined as foci of decreased signal on T1-weighted sequences and of increased signal on T2, DWI (diffusion-weighted imaging) and FLAIR (fluid-attenuated inversion recovery) located in the territory of 1 perforating arteriole (*Pantoni et al., 2014*).

We define a lacune of presumed vascular origin as a round or ovoid, subcortical, fluid-filled (similar signal as CSF) cavity, of between 3 mm and about 15 mm in diameter, consistent with a previous acute small deep brain infarct or haemorrhage in the territory of one perforating arteriole. On fluid-attenuated inversion recovery (FLAIR) images, lacunes of presumed vascular origin generally have a central CSF-like hypointensity with a surrounding rim of hyperintensity (Wardlaw et al., 2013).

When symptomatic, they are associated with the classical Fisher lacunar syndromes, the most common of which are: pure motor hemiparesis, sensorimotor stroke, pure sensory stroke, dysarthria-clumsy-hand syndrome and ataxic hemiparesis. Lacunar stroke accounts for about one fourth of the total cases of ischemic stroke, with incidence rates ranging from 13/100,000/year up to 59/100,000/year (*Pantoni et al., 2014*).

Lacunar infarcts are considered to be caused by progressive lipohyalinosis and atherosclerosis of deep

penetrating arteries (Wardlaw et al., 2013). In contrast with cardioembolic or large-artery atherosclerotic stroke, where embolized thrombus material is abruptly occluding a cerebral vessel, the potency of rtPA to recanalize the affected vessel in lacunar stroke (LacS) may be deemed to be lower.

Lacunar infarctions have been at the forefront of several studies analyzing stroke outcome after IVT and the results have been controversial. Some studies show a trend towards less benefit (Cocho et al., 2006), others show better outcomes (Fluri et al., 2010; Mustanoja et al., 2011) and still others show no differences compared to other etiological subtypes of ischemic strokes (Hsia et al., 2003).