Correlation between Risk Score Systems and Coronary Artery Disease Detected by Multislice Computed Tomography

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented by Sarah Sherif El Sayed Siliman Azab (M.B.B.@h.)

Under Supervision of **Prof. Dr. Adel Gamal Hasanin**

Professor of Cardiology Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohamed El Mahmoudy

Assistant Professor of Cardiology Faculty of Medicine- Ain Shams University

Dr. Mohamed Mostafa Farouk

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2018

Acknowledgement

This thesis is the culmination of my journey of my master degree which was just like climbing a high peak step by step accompanied with encouragement, hardship, trust, and frustration. When I found myself at top experiencing the feeling of fulfillment, I realized though only my name appears on the cover of this dissertation, a great many people including my family members, well-wishers, my friends, colleagues and various institutions have contributed to accomplish this huge task.

First and foremost, Thanks to ALLAH the most merciful and the mightiest to whom I relate my success in achieving any work in my whole life.

I acknowledge with extreme gratitude the professional supervision of my doctors from Ain Shams University **Prof. Dr. Adel Gamal Hasanin,** Professor of Cardiology **Dr. Ahmed Mohamed Al Mahmoudy,** Assistant Professor of Cardiology and **Dr. Mohamed Mustafa Farouk,** Lecturer of Cardiology for their continuous encouragement, guidance, support, attention and supervision throw out this work.

I am so grateful for the help of **Dr. Hisham Selim, Dr Sahar Gamal,** Cardiology Consultants at the National Heart Institute and **Dr. Tarek El Mawrdy,** without their endless support and dedicated efforts I would have never completed my thesis.

I owe all the thanks to the best person I have ever known, my husband **Dr. Mohamed Adel Salman,** for his continued and unfailing love, support and understanding during my pursuit of my master degree that made the completion of thesis possible. You were always around at times I thought that it is impossible to continue, you helped me to keep things in perspective and you always believed in me.

And at this moment of accomplishment I am greatly indebted to my beloved father **Dr. Sherif Azab**, my beloved mother **Dr. Amany El Shaer**, and my sisters **Menna** and **Mai** for always giving me the determination to overcome many trying moments to pursue my dreams. They were always beside me during the happy and hard moments to push me and motivate me

And finally I am thankful to all those who refused to help. Because of them, I did it myself.

List of Contents

Title	Page No.
List of Abbreviations	I
List of Tables	III
List of Figures	V
Introduction	1
Aim of the Work	3
Review of Literature	
 Risk Score Systems. Framingham R Systematic Coronary Risk Evaluation 	` '
■ Role of MSCT in detection of Coro	•
Patients and Methods	55
Results	65
Discussion	101
Conclusion	112
Limitations	113
Recommendations	114
Summary	115
References	118
Master Sheet	149
Arabic Summary	

List of Abbreviations

Full term Abb. ACS : Acute coronary syndrome : Aggregate plaque volume APV **ASCVD** : Atherosclerotic cardiovascular disease **AEC** : Automatic exposure control **BMI** : Body mass index CAC : Coronary artery calcium CACS : Coronary artery calcium score : Coronary Artery disease. CAD CCTA : Coronary computed tomography angiography **CFD** : Computational fluid dynamics : Coronary heart disease **CHD** : Calcium scoring CS CTA : Computed tomography angiography **CVD** : Cardiovascular disease \mathbf{CV} : Cardiovascular DSCT : Dual-source CT : Electron-beam CT **EBCT FFR** : Fractional flow reserve FRS : Framingham risk score HU: Hounsfield unit : Invasive Coronary Angiography **ICA** IR : Iterative reconstruction **IVUS** : Intravascular ultrasound

List of Abbreviations (Cont..)

Abb.	Full term
kVp	: Kilovolt Peak
LAD	: Left anterior descending artery
LCX	: Left circumflex artery
LM	: Left main
mAs	: Milli Ampere Second
MLA	: Minimal lumen area
MLD	: Minimal lumen diameter
MPR	: Multiplanar reformatting
MRI	: Magnetic resonance imaging
ms	: Millisecond
MSCT	: Multislice computerized tomography
mSv	: Millisievert
NCEP	: National Cholestrol Educational Program
PAV	: Percent atheroma volume
PET	: Positron emission tomography
PL	: Posterolateral artery
PPV	: Positive predictive values
PROCAM	: Prospective Cardiovascular Munster study
RCA	: Right coronary artery
SCORE	: Systematic Coronary Risk Evaluation
SPECT	: Single photon emission computed tomography
VH	: Virtual histology
WHO	: World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1): Demograp	hic data of the study sa	ample 65
Table (2): Clinical ch	naracteristics of the stud	dy population 66
Table (3): Results of	Risk Score Systems C	alculation 67
	t of CAD detected by	
	f Plaque volume, burd	_
Framingham risk sco	ion between Coronar ore and SCORE, and	the extent of CAD
	on between plaque vextent of CAD detecte	
obstructive and obstr	rison between norm ructive lesions as reg ham risk score	arding their risk %
_	ham % category an	
	ion between Framinghosition and volume det	_ ,
and obstructive lesion	son between absent Cons as regarding their	risk % according to
	% category and its re	

List of Tables (Cont..)

Table No.	Title	Page No.
	elation between SCOR position and volume de	.
	lation between Framin ium score and plaque by	•
	ation between Framing aposition detected by M	
CAD detected by M	ation between SCORE ISCT, the Framingham relation	% and plaque burden
	ORE % category and amingham % category.	
	ntion between SCORE 9 on detected by MSCT	
	lation between Framir	_
diagnostic accuracy	er operating characteris of the 2 RSS to predict	any coronary plaque
Table (21): Receive diagnostic accuracy	er operating characterisy of the 2 RSS to pre	tic curve to show the edict any obstructive

List of Figures

Fig. No.	Title	Page No.
Figure (1): Hig	h risk chart	17
Figure (2): Low	v risk chart	18
right coronary a	ree-dimensional volume rearteries and their branches graphy angiography	acquired with 64-slice
coronary arter	nree-dimensional volume y is acquired with d giography	ual-source computed
coronary arterie	Three-dimensional volumes and side branches are computed tomography and	clearly visualized with
gating without	agram showing retrospecti tube current modulation in onary angiography	n multislice computed
gating with the	ngram showing retrospecti e use of tube current mo graphy coronary angiograp	dulation in multislice
triggering beam	iagram shows prospective on during a portion of the grandiac phase, the X-ray leads to the terms of the terms	e cardiac cycle, while
-slice CT angio	ved planar reformatted imagraphy shows a non -calciright coronary artery	fied plaque at the mid

Fig. No.	Title	Page No.
dual - source CT ar proximal and distal	l planar reformatted in ngiography shows calc segments of the left	cified plaques at the anterior descending
dual - source CT and	I planar reformatted in giography shows a mi- gment of the right coro	xed type of calcified
Figure 12 (a): Focal	ly calcified plaque	41
Figure 12 (b): Exten	sively calcified plaque	41
_	onal flow reserve (FFI Γ) results	
	Γ results for 66-year-on-specific ischemia	
	ry CT angiography fol	
Figure (16): Coronar	ry CT angiography of a	a patent stent51
Figure (17): Coronar	ry CT angiography of i	n-stent restenosis 51
	ntage of patients in gham risk score	
	ntage of patients in	
Figure (20): MSCT	result of whole study p	opulation70
Figure (21): High gr	rade mid LAD focal lur	men stenosis72

Fig. No.	Title	Page No.
Figure (22): Signif	icant mid RCA	72
	nean Coronary calcium s	
	nean Framingham risk s	
Figure (25): The m	ean SCORE in the 3 MS	SCT categories 75
	ntage of each type of pl non obstructive groups.	
•	stribution of the 3 core according to their ris	
•	coronary calcium score	•
	% of plaque burden in	
_	bution of the 4 plaque of ategory according to the	
	ibution of the 3 MSCT	•
	ntage of each type of pl	•
	nean coronary calcium so	

Fig. No.	Title	Page No.
	2 2	e composition types in percentage88
		den in the 4 SCORE
positive correlation	between Framingha	eteristic curve showing m % category and the
positive correlation	n between Framingl	eteristic curve showing nam % category and 90
positive correlation	n between Framingl	eteristic curve showing nam % category and90
		pe plaque composition91
positive correlation	between SCORE and	eteristic curve showing and the extent of CAD92
	1 0	eteristic curve showing Plaque Burden93
positive correlation	between SCORE a	eteristic curve showing and Coronary calcium93

Fig. No.	Title	Page No.
-	amingham risk score mear	
	oution of the 3 Framingh their risk %	
	number of each plaque	
positive correlation	ver operating characterist between Framingham	% category and
depending on the RS	entage of patients in ea SS used. (A): FRS (B): S	CORE (High-risk
diagnostic accuracy	er operating characteristic of the 2 RSS to pred	lict any coronary
diagnostic accuracy	er operating characteristic of the 2 RSS to predic	et any obstructive

Introduction

Coronary artery disease (CAD) is the leading cause of morbidity and mortality in most industrialized nations throughout the world, responsible for enormous loss of human life involving huge expenditure globally. In 2010, nearly 15.6 million out of 52.7 million deaths worldwide, were due to cardiovascular disease (**Lozano et al., 2010**).

More than 90% of myocardial infarctions are attributed to modifiable risk factors such as hypertension, smoking, dyslipidemia, diabetes, abdominal obesity, exposure to traffic air pollution and noise, psychological factors, and insomnia (**Rapsomanik**, 2014).

Global CVD risk assessment is an integrated approach to prevention that recognizes the hazards of multiple risk factors to determine the absolute risk of experiencing a CVD event in a given time period. Almost all CVD guidelines recommend some form of risk scoring as a way to prioritize and plan primary prevention interventions (**Pearson et al., 2002**).

Cardiovascular risk scoring systems give an estimate of the probability that a person will develop cardiovascular disease within a specified amount of time, usually 10 to 30 years. Because they give an indication of the risk of developing cardiovascular disease, they also indicate who

is most likely to benefit from prevention (D'Agostino et al., 2008).

It is generally believed that invasive coronary angiography (ICA) is the be the gold standard in evaluating CAD, but with the development of the 16-multi-detector CT (MDCT), a non-invasive approach of coronary CT angiography (CTA) has been applied widely to avoid the complications of (ICA) (Mowatt et al., 2008).

It is generally believed that lipid-rich plaques have a higher risk of rupture with consequent thrombosis than fibrotic plagues, thus, differentiation of different plagues based on measurements of CT attenuation has attracted attention researchers. Studies comparing **MSCT** to angiography with intravascular ultrasound (IVUS) demonstrated that MSCT angiography is able to detect variable densities in the coronary atherosclerotic plaques (Korosoglou et al., 2010), (Motoyama et al., 2009).

Progressive increasing worldwide use of CCTA has demonstrated that CCTA has the potential to revolutionize how patients are risk-stratified by identifying rupture-prone, non-calcified or predominant non-calcified coronary plaques accurately and reliably (**Kitagawa et al., 2009**), (**Butler et al., 2007**).

Aim of the Work

To study the correlation between Risk Score Systems and the extent of Coronary Artery Disease detected by Coronary CT angiography.