Comparison between L-FABP and Renal Artery Duplex before & after Percutaneous Coronary Intervention for Early Detection of Acute Kidney Injury

Thesis

Submitted For Partial Fulfillment of MD Degree in CRITICAL CARE MEDICINE

Investigator

Azza Abdel Monem Elsayed Elmandouh

M.B., B.Ch., M.Sc.

Supervisors

Prof. Dr. Ahmed El-Sherif, MD Prof. Dr. Mahmoud Elbadry, MD

Professor of Critical Care Critical Care Medicine Department, Cairo University Professor of Critical Care Critical Care Medicine Department Cairo University

Prof. Dr. Hossam Sherif, MD

Assit. Prof. of Critical Care Critical Care Medicine Department, Cairo University

Prof. Dr. Ama'al Rizk, MD

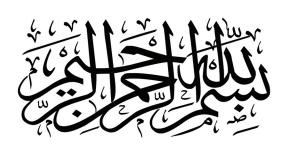
Cosultant of Clinical Pathology Critical Care Department, Cairo University

Cairo University 2015

مقارنة بين نسبة البروتين الرابط للنوع الكبدي للحمض الدهني وفحص الشريان الكلوي بالموجات فوق الصوتية قبل و بعد القسطرة التداخلية للشريان التاجى للاكتشاف المبكر للقصور الكلوي الحاد

رسالة مقدمة من الطبيبة

عزة عبد المنعم السيد المندوة


تحت إشراف

أ.د. محمود البدري أستاذ طب الحالات الحرجة جامعة القاهرة

أ.د. أحمد الشريف أستاذ طب الحالات الحرجة جامعة القاهرة

أ.د. حسام شريف أستاذ م. طب الحالات الحرجة جامعة القاهرة أ.د. آمال رزق إستشاري الباثولوجيا الاكلينيكية جامعة القاهرة

> جامعة القاهرة ٢٠١٥

وَعُلَّمُكَ مَا لَمْ ذَكُنْ وَكُانَ هَٰكُنْ ثَكُنْ اللهِ تَكُنُ اللهِ تَعْلَمُ اللهِ تَعْلَمُ اللهِ تَعْلَمُ اللهِ عَلَيْكَ مَا اللهِ عَلَيْكَ عَظِيمًا اللهِ عَلَيْكَ عَظِيمًا

[سورة النساء: 113]

رِيِّ لَكَ الْحَمْدَ الْعَظِيمَ لذاتك حَمِدَا وَلَيْسَ لِوَاحِدِ إلاك يَا مُنْبَتُ الْأَزْهَارِ عَاطِرَةَ الشذي مَا خَابَ يَوْمَا مِنْ دَعَا وَرَجَالَكَ يَا مُنْبَتُ الْأَزْهَارِ عَاطِرَةَ الشذي مَا خَابَ يَوْمَا مِنْ دَعَا وَرَجَالَكَ

ACKNOWLEDGEMENT

I wouldn't have been possible to write this doctoral thesis without the help and support of the kind people around me; I would like to extend my sincere thanks to all of them.

I am highly indebted to *Prof. Dr. Ahmed El-Sherif, Professor of Critical Care, Faculty of Medicine, Cairo University*, for his gentle guidance, generous help, advices, constant supervision, imparting his knowledge as well as approval of my work.

Immeasurable appreciation and profound gratitude to *Prof. Dr. Mahmoud Elbadry, Professor of Critical Care, Faculty of Medicine, Cairo University*, for his suggestions, valuable comments and provisions that benefited me in completion and success of my work. This thesis wouldn't have come to light without his great experience.

Also, I would like to express my special gratitude and thanks to *Dr. Amal Rizk, Consultant of Clinical Pathology, Faculty of Medicine, Cairo University*, for her meticulous efforts, valuable support, and cooperation to complete this work.

Also, I acknowledge and gratitude my dept of thanks to *Dr. Hossam Sherif*, *Assist. Prof. of Critical Care*, *Faculty of Medicine*, *Cairo University*, for his guidance through clinical implementation, cooperation, supervision, precious instructions and encouragement to bring this work to the attempted goal.

Above all, I am so grateful to *My Family*, whose always were by my side for their great patience, kindness, trust, unfailing support and much needed encouragement which help me in completion of my thesis and it wouldn't have been possible come to light without the help of all my family members.

Finally, Words fail to express my profound thanks and appreciation of the efforts and kind moral support of all *My Friends* whose in one way or another have contributed this work possible.

ABSTRACT

Background: Patient assessment by imaging studies using contrast media is currently replacing open procedures, especially in high-risk patients. However, the use of such contrast media might result in acute events and injuries after the procedure. Contrast-induced nephropathy (CIN) is a complex syndrome of acute renal failure occurring after the administration of iodinated contrast media. With the increasing use of radiocontrast media in diagnostic and interventional procedures over the last 30 years, CIN has become the third leading cause of hospital acquired acute renal failure, at least in the United States and Europe. The performance of urinary L-FABP which is a 14-kDa protein expressed in proximal tubular epithelial cells as an early detection marker of AKI has shown promise in various clinical settings. Determination of the renal resistive index (RI) by Doppler sonography has also been suggested as a means of diagnosing acute tubular necrosis.

Objective: The aim of our work is prospective assessment of the clinical biomarker L-FABP and the renal artery duplex for early prediction of acute kidney injury in patients scheduled for coronary angiography.

Methods: The present study was conducted on 40 patients admitted to the ICU Critical Care Department, Cairo University Hospitals scheduled for coronary angiography. Different risk factors for AKI were evaluated, including: Patients with diabetes mellitus, hypertensions, dyslipidemia, smoking, ischemic heart disease and the number of diseased coronary arteries. The L-FABP and renal artery duplex was studied for early prediction of acute kidney injury before and after coronary angiography.

Results: After coronary angiography mean serum creatinine was significantly increased (p value < 0.006) but still not beyond the critical value. Again the mean creatinine clearance was significantly reduced in our patients after usage of contrast (p value < 0.000). Mean L-FABP significantly increased 4 hours after coronary angiography and the sensitivity of L-FABP to CIN is 41% and specificity is 76% (with an AUC-ROC of 0.55). The mean RRI was significantly increased after angiography but Pulsaticity before and after coronary angiography show no statistically significant difference. The sensitivity of RRI to CIN is 69% and specificity is 48% (with an AUC-ROC of 0.56).

Conclusion: This study highlighted the importance of urinary L-FABP levels and RRI in early detection of AKI associated with contrast administration earlier than serum creatinine. The sensitivity of RI to CIN is 69% and specificity is 31% while the sensitivity of L-FABP to CIN is 41% and specificity is 76%.

Key Words:

Comparison between L-FABP and Renal Artery Duplex before & after Percutaneous Coronary Intervention for Early Detection of

LIST OF CONTENTS

	F	Page
Acknowledgment		I
Abstract		II
List of abbreviations		III
List of tables		V
List of figures		VII
Introduction		1
Aim of the work		4
Review of literature		5
Chapter 1: Acu	te kidney injury & its biomarkers	
Chapter 2: Con	trast Nephropathy	
Chapter 3: Live	er Fatty Acid Binding Proteins (L-I	FABP)
Chapter 4: Ren	al duplex	
Patients		69
Methods		71
Results		76
Discussion		93
Conclusion		105
Recommendation		106
Summary		107
References		109
Arabic Summary		١

LIST OF ABBREVIATION

	T
ACEI	Angiotensin converting enzyme
ACR	Albumin to creatinine ratio
ADQI	dialysis quality initiative Acute
AKIN	Acute kidney injury network
AKI	Acute kidney injury
ALT	Alanine transaminase
Ao	Aortic root
ARBs	Angiotensin receptor blockers
AST	Aspartate transaminase
ATN	Acute tubular necrosis
AUC-ROC	Area under the curve- Rock curve
CAD	Coronary artery disease
CHF	Congestive heart failure
CI-AKI	Contrast induced acute kidney injury
CIT	Conventional insulin therapy
CKD	Chronic kidney disease
CM	Contrast medium
COX2	Cyclooxygenase 2
CrCL	Creatinine clearance
CT	Compouted Tomography
ECBP	Exrtracorporeal blood purification
eCCl	estimated Creatinine Clearance
ECG	Electrocardiogram
EF	Ejection fraction
ЕСНО	Echocardiograms
ELISA	Enzyme linked immunosorbent assay
ESRD	End stage renal disease
FAs	Fatty acids
FGS	Focal glomerulosclerosis
FS	Fractional shortening
GFR	Glomerular filteration rate
eGFR	Estimated Glomerular filteration rate
HD	Heamodialysis
HIF-1	Hypoxia inducible factor-1
H2O2	peroxideHydrogen
HOCM	High osmolar contrast media
ICU	Intensive care unit
IGFBP-7	Insulin like growth factor binding proteins-7
IIT	Intensive insulin therapy

IL-18	Interleukin-18
IV	Intravenous
IVSTd	Interventricular septal thickness diameter
kDa	Kilodalton
KIM-1	Kidney injury molecule-1
LA	Left atrium
L-FABP	Liver fatty acid binding protiens
LOCM	Law osmolar contrast media
LVEDd	Left ventricular end diastolic diameter
LVESd	Left ventricular end systolic diameter
MHz	Megahertz
MI	Myocardial infarction
NAC	N-acetyl cystien
NAG	N-acetyl-B-D-glucosaminidase
NGAL	Neutrophil gelatinase associated molecule
NO	Nitric oxide
O	Oxygen
OH	Hydroxide ion
PAD	Pulmonary artery diameter
PCI	Percautenous coronary intervention
PPAR	Peroxisome Proliferator–Activated Receptors
PWTd	Posterior wall thickness diameter
RCM	Post contrast medium
RIFLE	Risk injury failure loss and end stage renal disease
RRT	Renal replacement therapy
RVEDd	Right ventricular end-diastolic diameter
SCr	Serum creatinine
TIMP-2	Tissue inhibitor of metalloprotinease-2
XDH	Xanthin dehydrogenase

LIST OF TABLES

Table	Title	Page
1	Staging of AKI According to KDIGO.	12
2	Causes of AKI: exposures and susceptibilities for non-specific AKI	13
3	Renal Biomarkers	25
4	Risk factors for the development of CIN	32
5	Fatty acid-binding protein (FABP) family	53
6	Characteristics, function and significance of L-FABP.	55
7	Demographic data of the studied patients	76
8	Chronic associated conditions and risk factors in our study	76
9	Baseline ECHO data in the studied patients	77
10	Baseline laboratory results in the studied patients	78
11	S.createnine in the studied patients	78
12	RIFLE criteria in the studied patients	79
13	L-FABP in the studied patients	80
14	RI in the studied patients	81
15	Pulsaticity in the studied patients	82
16	Correlation between L-FABP and number of diseased coronary vessels	84
17	Correlation between L-FABP and HTN	85
18	Correlation between L-FABP and DM	85
19	Correlation between L-FABP and dyslipidemia	86
20	Correlation between L-FABP and smoking	86
21	Correlation between RI and number of diseased coronary vessels	87
22	Correlation between RI and HTN	88
23	Correlation between RI and DM	88

24	Correlation between RI and dyslipidemia	89
25	Correlation between RI and smoking	89
26	Correlations between dose of dye and L_FABP, S. Creatinine & RI	90

LIST OF FIGURES

Fig.	Title	Page
1	The RIFLE criteria for AKI	8
2	Overview of the factors involved in the pathogenesis of contrast-induced nephropathy	38
3	Conceptual schema for the renal L-FABP mechanism	54
4	Renal duplex ultrasonography. Findings in patients with (A) higher resistive index and (B) normalresistive index	65
5	Diagram expression of how to measure the maximum and the minimum velocities from the pulsed-Doppler waveform obtained from the renal artery flow velcoity	75
6	Chronic associated conditions and risk factors	77
7	S.creatinine in the studied patients	79
8	RIFLE criteria in the studied patients	80
9	L-FABP in the studied patients	81
10	RI in the studied patients	82
11	Pulsaticity in the studied patients	82
12	Example of RI in the studied patient before angiography	83
13	Example of RI in the studied patient after angiography	83
14	ROC Curve study to correlate between dose of dye and L_FABP, S. Creatinine & RI	90
15	ROC Curve study of L-FABP to creatinine clearance after angiography	91
16	ROC Curve study of RRI to creatinine clearance after angiography	92

INTRODUCTION

Patient assessment by imaging studies using contrast media is currently replacing open procedures, especially in high-risk patients. However, the use of such contrast media might result in acute events and injuries after the procedure ^(1, 2)

AKI is one of a number of conditions that affect kidney structure and function. AKI is defined by an abrupt decrease in kidney function that includes, but is not limited to, ARF. It is a broad clinical syndrome encompassing various etiologies, including specific kidney diseases (e.g., acute interstitial nephritis, acute glomerular and vasculitic renal diseases);non-specific conditions (e.g., ischemia, toxic injury); as well as extrarenal pathology (e.g., prerenal azotemia, and acute postrenal obstructive nephropathy). More than one of these conditions may coexist in the same patient and, more importantly, epidemiological evidence supports the notion that even mild, reversible AKI has important clinical consequences, including increased risk of death. (3, 4)Thus, AKI can bethought of more like acute lung injury or acute coronary syndrome.

Contrast-induced nephropathy (CIN) is a complex syndrome of acute renal failure occurring after the administration of iodinated contrast media. With the increasing use of radiocontrast media in diagnostic and interventional procedures over the last 30 years, CIN has become the third leading cause of hospital-acquired acute renal failure, at least in the United States and Europe. The definition of CIN includes three necessary components: an absolute or relative increase in serum creatinine compared to the baseline values; a temporal relationship between the rise in serum creatinine and exposure to a contrast agent, and the exclusion of alternative explanations for renal impairment (e.g. sepsis).

Contrast-induced nephropathy has been recognized as a serious complication of PCI and may cause increased morbidity and mortality. CIN is one of the most important reasons for hospital-acquired renal failure and can cause prolonged hospitalization, increased cost and incidence of renal and cardiovascular events, and mortality. Elderly patients have a higher risk of CIN because of decreased renal reserve. In addition, some factors, such as an estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73 m2, a left ventricular ejection fraction 45%, diabetes mellitus, hypotension, anemia, emergency PCI, myocardial infarction history, and a contrast agent dose 200 mL have been identified as risk factors for CIN after PCI. Additionally, alcohol consumption and the arterial blood pressure level before contrast exposure may be associated with CIN. (8)

Liver-type fatty acid binding protein (L-FABP), one such candidate biomarker, is a 14-kDa protein expressed in proximal tubular epithelial cells. This endogenous antioxidant promotes free fatty acid metabolism by binding long-chain fatty acid oxidation products. The L-FABP gene is responsive to hypoxic stress, which occurs in the setting of kidney ischemic reperfusion injury. As a consequence, urinary excretion of L-FABP reflects the stress of proximal tubular epithelial cells, correlating with the severity of ischemic tubular injury. The performanceof urinary L-FABP as an early detection marker of AKI has shown promise in various clinical settings. However, there remains skepticism about whether urinary biomarkers will provide reliable diagnostic and prognostic stratification to assist physicians in the early management of AKI to systematically assess the performance characteristics. (9)

Over the past 2 decades, Doppler waveforms of intra-renal arterial blood flow have been extensively investigated to determine physiologic and pathologic correlations. Among the parameters introduced, the renal resistive index (RRI), which is considered a reflection of renal parenchymal resistance, has been widely used to support diagnostic and therapeutic procedures. (10) Determination of the renal resistive index (RRI) by Doppler sonography has also been suggested as a means of diagnosing acute tubular necrosis. RI is an index of resistance to flow distal to the point of sampling, with a lower RI being associated with less resistance to flow. (11)