

Role of MDCT Angiography in Diagnosis of Lower Limb Peripheral Arteries Diseases

Thesis

Submitted for Partial Fulfillment of the Master Degree in Radio diagnosis

By Ali Basyoni Amin Abdel Keream

M.B.B.Ch., Faculty of Medicine-Ain Shams University (2013)

Supervised by **Prof. Mohamed Shaker Ghazy**

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. Haytham Mohamed Nasser

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mohamed Shaker Ghazy**, Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Haytham Mohamed Masser**, Lecturer of Radiodiagnosis Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Ali Basyoni Amin Abdel Keream

This work is dedicated to . . .

My beloved Father, to whom I owe everything I ever did in my life and will achieve.

My Mother for always being there for me through out my personnel and professional life and all the nights she stayed with me.

My Brothers and My Sister for their support

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	11
Introduction	1
Aim of the Work	14
Review of Literature	
Anatomy	15
Pathology	31
Principles of Multislice	48
Patients and Methods	63
Results	76
Illustrative Cases	90
Discussion	100
Conclusion	105
References	106
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	The branches of the abdominal aorta divided in to three sets: visceral, and terminal.	parietal,
Table (2):	Identifying lesion location by sympad PAD	37
Table (3):	Available section width combinate different multiple-Row detects configurations.	or CT
Table (4):	Sex-point system of the degree of occ.	
Table (5):	Demographic characteristics of the	
	population	
Table (6):	Diagnostic accuracy of CTA for det aortoiliac disease	77
Table (7):	Diagnostic accuracy of CTA for det	ection of
	femoral artery disease	
Table (8):	Diagnostic accuracy of CTA for det	
	popliteal artery disease	
Table (9):	Diagnostic accuracy of CTA for det	
T 11 (10)	peroneal artery disease.	
Table (10):	Diagnostic accuracy of CTA for det	
Table (11):	PTA disease Diagnostic accuracy of CTA for det	
Table (11):	ATA disease	
Table (12):	Intermethod agreement between (
14616 (12)	DSA for grading of aortoiliac disease.	
Table (13):	Intermethod agreement between (
	DSA for grading of femoral artery dis	
Table (14):	Intermethod agreement between (
	DSA for grading of popliteal artery d	isease85
Table (15):	Intermethod agreement between (CTA and
	DSA for grading of peroneal artery d	isease86

List of Tables Cont...

Table No.	Title	Page No	٠.
Table (16):	Intermethod agreement between DSA for grading of PTA disease		87
Table (17):	Intermethod agreement between DSA for grading of ATA disease	CTA and	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of abdominal aorta	16
Figure (2):	Illustrative Diaphragm of Abdomin	
rigure (2):	Branches	
Figure (3):	CTA with 3D Reconstruction,	
rigure (5).	Abdominal Aorta	
Figure (4):	Common iliac, external iliac, inter	
rigure (4):	and common femoral arteries	
Figure (5):	The femoral artery	
Figure (6):	The popliteal artery	
Figure (7):	The anterior and posterior tibial ar	
Figure (8):	Radiological anatomy of the comm	•
rigure (o):	external iliac and lower limb arteri	•
Figure (9):	In atherosclerosis, arteries are clo	
rigure (b).	an accumulation of plaques -wh	CC v
	made up of cholesterol particl	
	calcium, cellular waste and	
	substances	
Figure (10):	Types of aneurysms	
Figure (11):	CT Generations.	
Figure (12):	Different generation CT scanners	
Figure (13):	Technique of spiral CT	
Figure (14):	Single-slice versus multi-slice CT	
Figure (15):	Detector array design of MSCT scar	
Figure (16):	Slice definition is achieve	
g (0)	electronically combining adjacent	•
	rows and employing appropriate	
	post patient collimation	
Figure (17):	Slice selections on a 16-channel sca	
Figure (18):	To scan the same volume in the sa	
G/·	with single-section helical CT	
Figure (19):	Diagnostic accuracy of CTA for	
5	arteries	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (20):	Agreement between CTA and I grading the severity of PAD in carteries.	
Figure (21):	Bilateral lower limb CT angirevealed. Moderate stenosis of the superficial femoral artery (SFA) arrow).	he right
Figure (22):	a) Right iliac angiography r superficial femoral artery (white profunda femoris artery (Red arro DSA showing moderate stenosis of	evealed, arrow), ow), b) the Rt.
Figure (23):	SFA (arrow blue) Lower limb CT angiography reveal right PTA stenosis (Red arr	ed. Mild row) &
Figure (24):	attenuated right ATA (white arrow a) Below knee DSA showing rig stenosis (blue arrow), b) Below kn showing attenuated middle third ATA (white arrow)	ht PTA nee DSA of right
Figure (25):	Lower limb CT angiography marked attenuated stenotic segnileft ATA (red arrow)	revealed nents of
Figure (26):	Left below knee DSA showing att ATA just after its origin (red arrow)	enuated
Figure (27):	Lower limb CT angiography moderate stenosis of left upper SFA (white arrow).	revealed third of
Figure (28):	a) Iliac angiography showing superficial femoral artery (red arraprofunda femoris artery (white artery The DSA revealed marked stends SFA segments (blue arrows)	ng the ow) and row). b) otic left

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (29):	CT angiography revealed the right tibio- perneal trunk is occluded just after its	
Figure (30):	the tibio-perneal trunk is occlude after its origin with good collaters	evealed ed just als (red
	arrow).	99

List of Abbreviations

Abb.	Full term
A /T) A	A ,
ATA	Anterior tibial artery
AVF	Arterio-venous fistula
<i>DSA</i>	Digital subtraction angiography
<i>MDCT</i>	$\ Multi-detector\ row\ CT$
<i>MR</i>	Magnetic resonance
<i>MRI</i>	Magnetic resonance imaging
<i>PAA</i>	Popliteal artery aneurysm
<i>PAD</i>	Peripheral arterial disease
PTA	Posterior tibial artery
SFA	Superficial femoral artery
TAO	Thromboangiitis obliterans

INTRODUCTION

eripheral arterial disease (PAD) reflect systemic atherosclerosis and is associated with long term disability and increased cardiovascular complications.

Lower limb peripheral artery disease is the third leading cause of atherosclerotic cardiovascular morbidity after coronary heart disease and stroke, it is estimated to affect 200 million people globally (Rudan et al., 2013).

Reduction of blood supply to a lower limb initially presents as intermittent claudication, while further restriction of flow leads to ischemic pain at rest, if not treated ulceration and gangrene may occur and can result in loss of a limb. Accurate characterization of number, level and severity of lesions is necessary to plan treatment (Koshy et al., 2009).

The diagnosis and management of PAD is based on careful history, physical examination and a variety of diagnostic tools.

Conventional angiography is the gold standard for imaging of lower extremity occlusive disease. However, this method is invasive and expensive and has a definite, although low, morbidity (Soto et al., 2001).

Compared with conventional angiography, CT angiography is less costly and faster, does not require assembly

of an angiographic team to perform the study, permits a wider variety of manipulations of the volumetric data set for image display and analysis in contrast to the limited projections routinely obtained during conventional angiography, and has fewer potential complications (Rubin et al., 2000).

AIM OF THE WORK

ur objective in this study is to discuss the peripheral arterial diseases (PAD) and to evaluate accuracy of MDCT angiography in diagnosis of the (PAD) compared to the Digital subtraction angiography (DSA) as pre-operative evaluation of lower limb peripheral arterial diseases.

Chapter 1

ANATOMY

rterial flow to the lower limbs comes from the abdominal aorta, which gives the iliac systems. The anatomy will be discussed due to their great importance in the examination of lower limb arterial system.

The abdominal aorta:

The abdominal aorta (**Fig. 1**) begins at the aortic hiatus of the diaphragm in front of the lower border of the body of the last thoracic vertebra, it descends in front of the vertebral column. It ends on the body of the fourth lumbar vertebra, commonly a little to the left of the midline by dividing into the two common iliac arteries. It diminishes rapidly in size, in consequence of the many branches which it gives of (*Standring et al.*, 2005).